Publications
Peer-reviewed articles, book chapters and preprints
* marks equal contributions.
2025
Spike Mechanism of Biological Neurons May Boost Artificial Neural Networks
D. Dold.
Viewpoint, Physics 18, 5, American Physical Society.
2024
Stable Learning Using Spiking Neural Networks Equipped With Affine Encoders and Decoders
A. M. Neuman, D. Dold, P. C. Petersen.
Submitted. arXiv
Energy efficiency analysis of Spiking Neural Networks based on temporal coding for space applications
P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, A. Hadjiivanov, D. Izzo.
Springer Astrodynamics. In print.
Proceedings of SPAICE2024: The First Joint European Space Agency / IAA Conference on AI in and for Space.
Editors: D. Dold, A. Hadjiivanov, D. Izzo.
Guidance and Control Neural Network Acceleration using
Memristors
Z. A. Rudge, D. Izzo, M. Fieback, A. Gebregiorgis, S. Hamdioui, D. Dold
Proceedings of SPAICE2024: The First Joint European Space Agency/IAA Conference on AI in and for Space (pp. 162-168).
Lost in space but not in data: Tracking Technology Trends in the Space Field
A. Berquand, A. V. Ladeira, D. Dold
Proceedings of SPAICE2024: The First Joint European Space Agency/IAA Conference on AI in and for Space (pp. 145-149).
The Space Optimization Competition: Third Edition
M. Bannach, E. Blazquez, D. Izzo, G. Acciarini, A. Hadjiivanov, G. Heißel, R. Mastroianni, S. Origer, J. Grover, D. Dold, Z. Rudge
The Genetic and Evolutionary Computation Conference (GECCO). github
Towards Large-scale Network Emulation on Analog Neuromorphic Hardware
E. Arnold, P. Spilger, J. Straub, E. Müller, D. Dold, G. Meoni, J. Schemmel
Neuro Inspired Computational Elements Conference (NICE 2024). arXiv
2023
Artificial Intelligence for Space: AI4SPACE – Trends, Applications, and Perspectives. Chapter: Selected Trends in Artificial Intelligence for Space Applications
D. Izzo, G. Meoni, P. Gómez, D. Dold, A. Zoechbauer
CRC press, ISBN 9781003366386. arXiv
Artificial Intelligence for Space: AI4SPACE – Trends, Applications, and Perspectives.
Chapter: Neuromorphic Computing and Sensing in Space.
D. Izzo*, A. Hadjiivanov*, D. Dold*, G. Meoni*, E. Blazquez*
CRC press, ISBN 9781003366386. arXiv
Modelling the European Space Sector with Knowledge Graphs.
A. Berquand*, D. Dold*
German Aerospace Congress 2023.
Differentiable graph-structured models for inverse design of lattice materials.
D. Dold*, D. Aranguren van Egmond*
Cell Reports Physical Science, Volume 4, Issue 10, 101586. arXiv | gitlab | github
Totimorphic structures for space application.
A. Thomas, J. Grover, D. Izzo, D. Dold
XXVII Italian Association of Aeronautics and Astronautics (AIDAA) Congress. arXiv
A Neuronal Least-Action Principle for Real-Time Learning in Cortical Circuits.
W. Senn*, D. Dold*, F. Kungl, B. Ellenberger, J. Jordan, Y. Bengio, J. Sacramento, M. A. Petrovici*
eLife 12:RP89674.
2022
Detection, Explanation and Filtering of Cyber Attacks Combining Symbolic and Sub-Symbolic methods.
A. Himmelhuber, D. Dold, S. Grimm, S. Zillner, T. Runkler
Computational Intelligence In Cyber Security (IEEE CICS), IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2021). arXiv
Neuro-symbolic computing with spiking neural networks.
D. Dold, J. Soler Garrido, V. Caceres Chian, M. Hildebrandt, T. Runkler
International Conference on Neuromorphic Systems (ICONS). arXiv
Relational representation learning with spike trains.
D. Dold
IEEE World Congress on Computational Intelligence (WCCI), International Joint Conference on Neural Networks (IJCNN). arXiv
Evaluating the feasibility of interpretable machine learning for globular cluster detection.
D. Dold*, K. Fahrion*
Astronomy & Astrophysics. arXiv | github
2021
An energy-based model for neuro-symbolic reasoning on knowledge graphs.
D. Dold, J. Soler Garrido
20th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA). arXiv
Learning through structure: towards deep neuromorphic knowledge graph embeddings.
V. Caceres Chian*, M. Hildebrandt*, T. Runkler, D. Dold*
International Conference on Neuromorphic Computing (ICNC). arXiv
Fast and energy-efficient neuromorphic deep learning with first-spike times.
J. Göltz*, L. Kriener*, A. Baumbach, S. Billaudelle, O. Breitwieser, B. Cramer, D. Dold, ... M. A. Petrovici
Nature Machine Intelligence, Volume 3. arXiv
Machine learning on knowledge graphs for context-aware security monitoring.
J. Soler Garrido*, D. Dold*, J. Frank
IEEE International Conference on Cyber Security and Resilience (IEEE CSR). arXiv | github
SpikE: spike-based embeddings for multi-relational graph data.
D. Dold and J. Soler Garrido
International Joint Conference on Neural Networks (IJCNN). arXiv | github
2020
Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate.
S. Billaudelle*, Y. Stradmann*, K. Schreiber*, B. Cramer*, A. Baumbach*, D. Dold*, J. Göltz*, A. F. Kungl*, T. C. Wunderlich*, et al.
2020 IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, 2020, pp. 1-5. arXiv
2019
Accelerated physical emulation of Bayesian inference in spiking neural networks.
A. F. Kungl, S. Schmitt, J. Klähn, P. Müller, A. Baumbach, D. Dold, ... M. Kleider, et al.
Frontiers in Neuroscience, 13, 1201. arXiv
Stochasticity from function - why the Bayesian brain may need no noise.
D. Dold*, I. Bytschok*, A.F. Kungl, A. Baumbach, O. Breitwieser, J. Schemmel, K. Meier, M.A. Petrovici*
Neural Networks, 119, 200-213. arXiv
2017
Spike-based probabilistic inference with correlated noise.
I. Bytschok*, D., Dold*, J. Schemmel, K. Meier. and M. A. Petrovici*
arXiv
Patents
Method and system for anomaly detection in a network.
Europe: EP4270227A1.
Patent applications
Method and system for anomaly detection in a network.
USA: US20230353584A1 (24/04/2023).
China: CN116980321A (28/04/2023).
Method and Device for Providing a Recommender System.
Europe: EP4231199A1 (22/02/2022). WIPO: WO2023160947A1 (30/01/2023).
Industrial device and method for building and/or processing a knowledge graph.
Europe: EP4030351A1 (18/01/2021). USA: US20220229400A1 (28/12/2021). China: CN114819049A (18/01/2022)
Neuromorphic hardware for processing a knowledge graph represented by observed triple statements and method for training a learning component.
Europe: EP4030349A1 (18/01/2021). USA: US20220230056A1 (20/12/2021). China: CN114819048A (18/01/2022)
Neuromorphic hardware and method for storing and/or processing a knowledge graph.
Europe: EP4030350A1 (18/01/2021). USA: US20220237441A1 (6/01/2022). China: CN114819047A (18/01/2022).