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From a generic Bayesian perspective, cortical networks can be viewed as
generators of target distributions. To enable such computation, models assume
neurons to possess sources of perfect, well-behaved noise - an assumption that is
both impractical and at odds with biology. We show how local plasticity in an
ensemble of spiking networks allows them to co-shape their activity towards a
set of well-defined targets, while reciprocally using the very same activity as a
source of (pseudo-)stochasticity. This enables purely deterministic networks to
simultaneously learn a variety of tasks, completely removing the need for true
randomness by using the available background activity of the whole ensemble as
a resource to perform Bayesian computations.

Coding: refractory z=1, else z=0

Network dynamics 
= sampling from 
Boltzmann distr.

𝑝𝒛 ∝ 𝑒𝒛
T𝑾𝒛+𝒃

𝐶𝑚 ሶ𝑢 = gl El − u + Inetwork + Inoise

Dynamics: Leaky Integrate-and-Fire with COBA synapses 
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Noise source: Spikes from functionally disjunct subnetworks, no 
Poisson noise or any other pseudo-randomly generated noise.

Training: All networks simultaneously trained with Contrastive 
Divergence to sample from target distributions.

Hierarchical networks: Ensemble of (deterministic) networks 
trained on digits and letters are able to perform classification, 

pattern completion and sample generation (shown here).

Physical modeling: The concept 
directly translates to analogue 

neuromorphic  hardware (BrainScaleS), 
yielding an acceleration of 104

compared to biological time.

Δ𝑾𝑖𝑗 = 𝑝𝒛𝑖=1,𝒛𝑗=1
𝒕𝒂𝒓𝒈𝒆𝒕

− 𝑝𝒛𝑖=1,𝒛𝑗=1
𝒔𝒂𝒎𝒑𝒍𝒆𝒅

Δ𝒃𝑖 = 𝑝𝒛𝑖=1
𝒕𝒂𝒓𝒈𝒆𝒕

− 𝑝𝒛𝑖=1
𝒔𝒂𝒎𝒑𝒍𝒆𝒅

A major driving force behind the recent achievements of deep learning is the
backpropagation-of-errors algorithm (backprop), which solves the credit
assignment problem for deep neural networks. Its effectiveness in abstract neural
networks notwithstanding, it remains unclear whether backprop represents a
viable implementation of cortical plasticity. Here, we present a new theoretical
framework that uses a least-action principle to derive a biologically plausible
implementation of backprop. The presented model incorporates several features
of biological neurons that cooperate towards approximating a time-continuous
version of backprop, where plasticity acts at all times to reduce an output error
induced by mismatch between different information streams in the network.
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prediction error cost function
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𝑇

Urbanczik-Senn (basal prediction of soma)
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= 0

𝐿 𝑢, ሶ𝑢 = −𝐸 𝑢

Energy function
encodes network 

architecture and cost.

Dynamics: Euler-Lagrange eqs. on advanced potential.

Equation of motion:

Look-ahead undoes low-pass filtering, allows time-continuous 
learning without phases.

≈ 𝑚∞
3 ℎ 𝑢, ሶ𝑢

sodium gating of HH neurons

𝑟𝑘 = ҧ𝑟𝑘 + 𝜏 ሶ ҧ𝑟𝑘

phase-advance of ҧ𝑟𝑘 = 𝜑 𝑢𝑘

≈ ҧ𝑟𝑘 𝑡 + 𝜏

𝑢𝑘

𝑊𝑘+1

𝑊𝑘 𝑟𝑘−1

𝑒𝑘
-

+

𝑊𝑘
𝐼𝑃

𝑊𝑘
𝑃𝐼

𝐵𝑘+1

𝑢𝑘+1

Prediction error encoded in apical dendrites:

ҧ𝑒𝑘 = ҧ𝑟𝑘
′ ∙ 𝑊𝑘+1

𝑇 𝑢𝑘+1 − 𝑊𝑘+1 ҧ𝑟𝑘

~𝑊𝑘+1
𝑇 𝑢𝑘+1 −𝑊𝑘+1

𝑇 𝑊𝑘+1 ҧ𝑟𝑘

= 𝐵𝑘+1𝑢𝑘+1 −𝑊𝑘
𝑃𝐼𝑊𝑘

𝐼𝑃 ҧ𝑟𝑘

top-down 
feedback

bottom-up
prediction

nudge              
towards target

feedback shifts
away from prediction

nudged away 
from basal potential

𝑢𝑘+1

𝑢𝑘+1

𝑢𝑘

𝑢𝑘

𝑒𝑘 ≠ 0

ሶ𝑊𝑘 ~ ҧ𝑒𝑘 ҧ𝑟𝑘−1
𝑇

ҧ𝑒𝑘 = ҧ𝑟𝑘
′ ∙ 𝑊𝑘+1

𝑇 ҧ𝑒𝑘+1

Combined neurosynaptic dynamics yields backprop

MNIST

iEEG signals

Illustration of error prop.
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