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Abstract

Conclusion

Why spikes?1

• energy efficient signal transmission
• possibly to encode samples

Stochasticity in the brain?2

• major source: background activity
• spiking activity as sampling from

posterior distribution
• “deterministic” Bayesian computing

Can the brain do backprop?3,4

• possibly by employing dendrites, 
feedback and cortical circuitry

• learning rule itself local and biologically 
plausible / interpretable

Computers like brains?5,6

• utilizing spikes and finding efficient local 
learning rules are currently the main 
challenges to more “brain-like” hardware

A few building blocks of the brain

II+III Sampling with deterministic spiking neurons

I Backprop in cortical networks

Neuromorphic hardware: Towards silicon brains
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feedforward
input
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Different from abstract neurons used in deep 
learning, biological neurons come in different 
types and shapes.
For instance, the main neuron type found in the 
cortex (pyramidal neurons) possesses tree-like 
structures (dendrites) for input integration.

What is the function of such neuron diversity?

Biological neurons communicate via all-or-nothing events 
called action potentials (spikes). The simplest model for 
this is a leaky integrator (simplified for convenience)

which emits a spike when the membrane potential 
passes a threshold value. Afterwards, it cannot be excited 
again for some time (refractory period).

Spikes are energy efficient, but are there more benefits?

spike

refractory period 𝜏 ሶ𝑢 = −𝑢 + input , (1)

Biological neurons behave deterministically in vitro, but 
are noisy in vivo due to a bombardement with spikes 
coming from approx. 10,000 adjacent cortical neurons.

Is this noise harmful or can it be utilized somehow?
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The noisy behavior of neurons is very likely the 
hallmark of a stochastic computation scheme.
Such a scheme explains how the brain deals 
with ambiguous input, and how visual 
illusions like bi-stable images (duck/rabbit) 
might form, i.e., through sampling of modes.

Stochastic comp. can naturally be 
implemented with spiking neurons 
by assigning refractory neurons the 
state 𝒛 = 1 and 0 otherwise.

Neurons become stochastic when embedded in an 
ensemble of (functional) networks, like particles in a heat 
bath. In this scenario, the spiking dynamics of every 
network in the ensemble sample from a probability 
distribution parametrized by the respective synaptic 
weights, without any “true” source of stochasticity.

𝐩𝐫𝐨𝐯𝐢𝐝𝐞
"𝐛𝐚𝐜𝐤𝐠𝐫𝐨𝐮𝐧𝐝 𝐧𝐨𝐢𝐬𝐞“

(and vice versa)
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𝑝𝒛 ∝ 𝑒𝒛
T𝑾𝒛+𝒃

target    sampled

All networks of the ensemble can be trained with 
contrastive divergence to either sample from target 
distributions or model data, allowing them to perform 
pattern completion and classification tasks.             
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Inspired by the brain, non-Von Neumann architectures 
are developed to explore novel computational 
paradigms. One such platform is the BrainScaleS physical 
model system in Heidelberg, implementing neurons and 
synapses as analogue circuits with digital spike 
communication. It promises great emulation speed (104

speed-up compared to biology) and low power demand.

On this system, we achieved a physical realization of 
deterministic spiking sampling ensembles (II+III ). 

Currently developed systems - here shown: 
HICANN-X (Heidelberg) and Loihi (Intel) - feature 
on-chip learning, allowing an energy efficient 
and (possibly) accelerated implementation of 
local learning rules on neural substrates. HICANN-X (Heidelberg University) Loihi (Intel)

Theorem 2 (real-time gradient descent)

𝜹𝑳 = 𝟎 & ሶ𝑾 = −𝜼 ⋅ 𝜵𝑾 𝑳

Theorem 1 (real-time backprop)

𝐝

𝐝𝑾𝒊
𝒄𝒐𝒔𝒕 = lim

𝛽→0

1

𝛽
𝒆𝒊
𝜷
𝜑𝛽 𝑢𝑖

T

𝒆𝒊 = 𝑊𝑖+1
T 𝒆𝒊+𝟏 , ሶ𝑾𝒊 ∝ 𝒆𝒊𝜑 𝑢𝑖

T

𝑳(𝒖) =

𝑖

𝒖𝒊 −𝑾𝒊𝝋(𝒖𝒊−𝟏)
2 + 𝛽 ⋅ 𝒄𝒐𝒔𝒕

prediction error 𝒆𝒊

teacher strength

𝒖𝒊

𝑾𝒊𝝋(𝒖𝒊−𝟏)

How adjust deep synapses
to improve final output…?
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1) Apical: prediction error

3) Soma: leaky integration 

2) Basal: forward input

4) Plasticity: dendritic prediction of soma
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Whether the brain might use an optimization scheme like 
backprop to guide synaptic plasticity in deep hierarchical 
cortical areas is still an open question.
In our model, backprop is approximated by cortical 
circuits combining different neuron types and extended 
neuron models. Errors are calculated locally via lateral 
interneuron circuits that try to explain away feedback 
coming from higher areas. These errors nudge the soma, 
becoming accessible to a biologically plausible 
plasticity rule ሶ𝑾𝒊 ∝ 𝒖𝒊 −𝑾𝒊𝝋 𝒖𝒊−𝟏 𝝋𝑻 𝒖𝒊−𝟏 .

The full model can be derived from first principle by introducing a Lagrangian 𝐿 that 
has to be stationary under neural dynamics and is minimized by synaptic dynamics. 

The combined neurosynaptic dynamics lead to the emergence of backprop.

Errors are propagated backward through the 
network via feedback connections while 
sensory information is propagated forward.
Neurons minimize these local prediction 
errors 𝒆𝒊, which in turn reduces a global cost 
function. 

The underlying computational principles allowing the brain to deal with unreliable, 
high-dimensional and often incomplete data while having a power consumption on 
the order of a few Watt are still mostly unknown.
Here, I present ideas on how structures and mechanisms found in the cerebral cortex 
might be employed to perform Bayesian computing with spiking neurons and to 
implement the widely used error backpropagation algorithms in cortical networks.
Such models are ideal candidates for hardware mimicking the vastly parallel structure 
of the brain (so-called “neuromorphic“ hardware), promising a strongly accelerated 
and power-efficient implementation of powerful learning and inference algorithms.

𝒆𝒊


