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Motivation

1. Models of error backpropagation

3. Model and neurophysiological interpretation

4. One learning rule, two optimizations

How adjust deep synapses
to improve final output…?

Whether the brain uses an optimization
scheme like backprop to guide synaptic
plasticity in deep hierarchical cortical areas is
still an open question.

Recently, several models explaining how
backprop might be realized in the cortex have
been proposed, using predictive coding1,
inhibitory microcircuits2,3 as well as energy-
based1,4 and Lagrangian neurodynamics5.

𝝉 ሶ𝒖𝑖 = 𝒈𝑙
𝜆 𝛾𝑾𝑖𝒓𝑖−1 − 𝒖𝑖) + 𝒈𝜖

𝜆(𝛾𝒆𝑖
𝑾 − 𝒖𝑖 + 𝒈𝑙

1−𝜆(𝛾𝑮𝑖𝒓𝑖+1 − 𝒖𝑖) + 𝒈𝜖
1−𝜆(𝛾𝒆𝑖

𝑮−𝒖𝑖)

Here, we extend these models to unsupervised learning and bidirectional
(supervised and unsupervised) learning while maintaining a high degree of
biological plausibility.

2. Folded autoencoder structure6

                

    

    

  
 

             

  
 
 
 
   

 
   
 
  
 

            

                

 
 
 
 
 
 
 
 
 

5. Outlook
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1. Predictive coding1

2. Dendritic microcircuit3

3. Neuronal Least Action5

𝑟𝑖 = 𝜑 𝑢𝑖 + 𝜏 ሶ𝜑(𝑢𝑖)

            

            

    

    

    

 
 
 
 
  
  
  

𝜑 𝑢𝑖

• invert architecture and add 
input → supervised learning, 
approximately backprop

• needs phases for learning, 
plasticity is only active when 
the network is stationary

• high-level, no 
implementation details

• apical compartments encode 

prediction error

• errors calculated via inhibitory microcircuit

• microcircuit weights trainable to cancel top-layer feedback, 
no weight transport

• neurons hold both forward and error information

• requires phases for learning

• neuronal dynamics derived from Euler-Lagrange equations + 
prospective coding

• derived neurodynamics: leaky integrators with look-ahead           
dynamics                                                                         (A)

• no phases, time-continuous backprop  (B)

• same error interpretation as the dendritic microcircuit model

• see also: Poster T19 by Kungl, Akos F. et al.

Summary

A B

𝝆𝒊 𝒕 = 𝒓𝒊(𝒕) + 𝝉𝒓𝒊
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𝑾𝒊: discriminative / forward weights

𝑮𝒊: generative / backward weights

Learning useful latent 
representations through bottleneck, 

similar to autoencoders.

happens
simultaneously!

visible input: encoded in latent 
space through forward weights.

latent input: decode through 
backward weights to generate data.

Network structure and dynamics condensed in energy function (squared errors):

𝜆: gating of forward and backward flow,      𝐶: reconstr. error 𝐶 = 𝒖0 − 𝒖0
𝑡𝑟𝑔𝑡 2

𝑔𝑙: leak conductance,       𝛾 = 1 +
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≈ 1

Neurosynaptic dynamics derived as gradient descent:
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→ 5-compartment model with soma and 
four dendritic branches.
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Both plasticity rules can be interpreted as
Urbanczik-Senn type7 rules:

learning is driven by the dendritic prediction of somatic activity.

Plasticity:

For edge cases (𝜆 = 0 or 𝜆 = 1), the plasticity approximates error backpropagation, 

e.g., for 𝜆 = 0 we get ሶ𝑮𝒊 ∝ 𝒆𝑖
𝑮 ⋅ 𝒓𝒊+𝟏

𝑻 and 𝒆𝑖
𝑮 =

𝒈𝑙

𝒈𝜖
𝒓𝑖
′ ∙ 𝑮𝑖−1

𝑇 𝒆𝑖−1
𝑮 .

Using the solution of stationary neurodynamics as well as choosing 𝜆 ≪ 1 , 𝜆 > 0
the plasticity rules can be rewritten as:

ሶ𝑾𝒊 ∝ −𝜆 1 − 𝜆 ⋅ 𝛁𝑾𝑖
𝑮𝑖𝒓𝑖+1 + 𝒆𝑖

𝑮 −𝑾𝑖𝒓𝑖−1
𝟐

ሶ𝑮𝒊 ∝ − 1 − 𝜆 2 ⋅ 𝛁𝑮𝑖𝐶

reduce cost function via backprop, 
e.g., with dendritic model

learn to match generative input at each layer

• Bidirectional learning by adding cost function 

in latent layer → currently work in progress!

• Spiking neuron models? 
Initial results for classification of MNIST 
images with stochastic binary neurons 

and refractory period of 3ms.
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Test by encoding with discriminative and decoding with generative path:
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