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To boldly go…

1. Time to first spike embeddings3. Spike-based graph neural networks

Check out our
projects!
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Flexible data structure: molecules, social networks, projects, … 

Represented via triples: or as a heterogeneous graph:

C. Fisher plays L. Organa
L. Organa appearsIn Star Wars

…

Inference: predict missing links

C. Fisher appearsIn Star Wars?
A. Skywalker hasChild L. Organa?

…
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Example: TransE (Bordes et al. 2013)

graph Ԧ𝑒𝑛, Ԧ𝑟𝑝 link existence
embed 𝑓( Ԧ𝑒𝑠, Ԧ𝑟𝑝, Ԧ𝑒𝑜)

𝑓( Ԧ𝑒𝐶.𝐹., Ԧ𝑟𝑎𝑝𝑝𝑒𝑎𝑟𝑠𝐼𝑛, Ԧ𝑒𝑆.𝑊.)

𝑓( Ԧ𝑒𝐴.𝑆., Ԧ𝑟ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑 , Ԧ𝑒𝐿.𝑂.)

Inference: evaluate model

Decoder function 𝑓: 
reconstructs graph property

Node embedding:
time to first spike of population.

Relation embedding:
spike time differences.

Decoder: σ𝑗 ||𝑑 Ԧ𝑒𝑠, Ԧ𝑒𝑜 − Ԧ𝑟𝑝||𝑗

Neuron model:
here: I&F, only requires calculatable gradient w.r.t. spike times.

with 𝑑 Ԧ𝑒𝑠, Ԧ𝑒𝑜 = || Ԧ𝑒𝑠 − Ԧ𝑒𝑜||

2. Spike train embeddings

Node embedding:
spike train.

Relation embedding:
spike time differences.

Challenge: spike order has to be conserved.

Solution: updates via inter-spike intervals.

Data set MRR ours TransE RESCAL

FB15k-237 0.21 0.21 0.28

CoDEx-S 0.30 0.35 0.40

IAD 0.66 0.66 0.61

UMLS 0.81 0.81 0.88

Kinships 0.47 0.48 0.81

1) Zachary Karate Club

Karate Club splits into
two groups led by
person 1 and 34.

Given: social graph
Task: how do they split?

2) Link prediction benchmarks

Mean Reciprocal Rank (MRR) 
measures link prediction
performance.
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Extension of convolution operator to graphs:

Idea: update embeddings using local information.
New: • irregular structure,

• permutation invariant w.r.t. nodes,
• concepts not seen during

training can be embedded! 

„Equivalent“ vector space representation learned via gradient descent.

Dataset Non-frozen MRR Frozen MRR

FB15k-237 0.23 0.26

UMLS 0.58 0.80

1) Weight sharing: freeze weights

Embeddings align to static and random weights.

2) Building spike-based neural networks for graph inference

Spiking neural
networks for Earth 
observation

Differentiable
graphs for lattice
inverse design

Self-configuring
cube ensembles
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𝜏𝑠

fixed input spikes

initial spike
embeddings

final spike
embeddings

frozen GNN
spike routing

Dataset MRR SGNN Reference (TransE)

German States 0.56 0.69

Starcraft 0.67 0.71

Simultaneous
and 

sparse (20-30%) 
computation!

𝜏𝑠 ሶ𝒖𝑠 𝑡 ∝ 

relations 𝑟



neighbors 𝑛

𝑊𝑟 𝜿 𝑡, 𝒆𝒏

Given a concept like actor, how
can it be represented using spikes? 

How are such representations used to 
infer that, e.g., a person is an actor?

We propose to represent such concepts
(“person”, “actor”) and relationships

(“is an”) in the spike domain 
using graph embedding.

Key message


