
Heidelberg University
Department of Physics and Astronomy

Master’s Thesis

in Physics

submitted by

Dominik Dold

born in Titisee-Neustadt, Germany

September 2016

Stochastic Computation
in Spiking Neural Networks

Without Noise

This Master’s Thesis has been carried out by Dominik Dold at the

Kirchhoff-Institute for Physics

Ruprecht-Karls-Universität Heidelberg

under the supervision of

Prof. Dr. Karlheinz Meier

Stochastic Computation in Spiking Neural Networks Without Noise

Nowadays, it is generally assumed that cortical neurons perform stochastic compu-
tations. In computational models of cortical neural networks, stochasticity is often
implemented by feeding every neuron with Poisson noise. However, this approach runs
into difficulties as soon as we consider physical implementations of networks, e.g. on
neuromorphic hardware. Such systems always have limited bandwidth for external in-
put, thus rendering a scalable implementation of stochastic computation that relies on
external noise unfeasible.
In the cerebral cortex, one major source of stochasticity is the ongoing background

activity of the cortex itself. Inspired by this observation, we implement a novel approach
for providing functional networks with noise. For this purpose, so-called Boltzmann
machines consisting of Leaky Integrate-and-Fire neurons are utilized to construct a
small and sparsely connected network of functional units. The key idea is that every
Boltzmann machine in this network receives noise from other Boltzmann machines,
which generate noise as a byproduct of their functional task.

By combining computational principles inspired from biology as well as methods
coming from modern machine learning, we demonstrate that it is indeed possible to
implement such networks of Boltzmann machines that function reliably without any
external noise input.

Stochastisches Rechnen in Spikenden Neuronalen Netzen Ohne Rauschen

Heutzutage wird allgemein angenommen, dass Neuronen im Kortex stochastische Meth-
oden zur Informationsverarbeitung verwenden. Um dieses stochastische Verhalten in
numerischen Modellen kortikaler Netzwerke zu berücksichtigen, speist man diese meist
mit Poisson-Rauschen. Dies führt jedoch zu Problemen bei physikalischen Umsetzungen
solcher Netzwerke, z.B. auf neuromorpher Hardware. Hierbei ist die für externe Signale
verfügbare Bandbreite immer beschränkt, wodurch eine skalierbare Implementierung
stochastischer Rechenmethoden, welche externes Rauschen benötigen, nicht möglich ist.
Im Kortex stellt die permanente Hintergrundaktivität des Kortex selbst eine maßge-

bliche Rauschquelle dar. Hiervon inspiriert untersuchen wir eine neue Methode um
funktionale Netzwerke mit Rauschen zu versorgen. Dabei verwenden wir sogenannte
Boltzmann-Maschinen, bestehend aus Leaky Integrate-and-Fire Neuronen, welche zu
kleinen, spärlichen Netzwerken verbunden werden. Die Hauptidee hierbei ist, dass jede
Boltzmann-Maschine durch andere sich im Netzwerk befindliche Boltzmann-Maschinen
mit Rauschen versorgt wird, deren Aktivität ein Resultat der Bewältigung funktionaler
Aufgaben ist.

Durch Kombinieren von Prinzipien und Konzepten aus Biologie und Maschinellem
Lernen demonstrieren wir, dass es in der Tat möglich ist solche Netzwerke aus Boltzmann-
Maschinen zu implementieren, welche ohne externe Rauschquellen funktionale Aufgaben
lösen können.

Contents
1 Introduction 1

2 Theoretical Background 5
2.1 Leaky Integrate-and-Fire (LIF) Neuron Model 5
2.2 Tsodyks-Markram Model . 10
2.3 Stochastic Computing in Spiking Networks 11

2.3.1 Neural Sampling . 13
2.3.2 LIF Sampling . 15
2.3.3 Kullback-Leibler Divergence . 21

2.4 Training Networks of Spiking Neurons 23
2.4.1 Boltzmann Machines . 23
2.4.2 Contrastive Divergence . 25

3 A Sea of Boltzmann Machines: The Simplest Case 27
3.1 Autocorrelations in Noise Spike Trains 28

3.1.1 Correlation Patterns in the Free Membrane Potential 29
3.1.2 Effect on the Free Membrane Potential Distribution 35

3.2 LIF Sampling with Boltzmann Machine Noise 40

4 Using Correlated Spike Trains from the Sea of Boltzmann Machines 45
4.1 Merging Correlated Spike Trains . 46
4.2 Distributing Correlated Spike Trains 52

4.2.1 Mixing Input Correlations . 53
4.2.2 Mixing Synapse Types . 58
4.2.3 LIF Sampling with Correlated Noise 60

5 Connecting the Sea of Boltzmann Machines to a Large Network 63
5.1 Introducing Interconnections in the Sea 66

5.1.1 Calibrating on Intrinsic Noise 66
5.1.2 Dealing with Network-Wide Correlations 69

5.2 Intrinsic Noise Restoring Stochasticity 77
5.2.1 The Poisson Fade-Out . 78
5.2.2 The Poisson Cut-Off . 84

6 Stochastic LIF Networks Without External Noise 87
6.1 Deterministic Start of Networks . 87

III

6.2 Removing Correlations by Training . 90
6.2.1 Special Case: Boltzmann Machines with Zero Weights 91
6.2.2 General Case: Boltzmann Machines with Random Weights . . . 93

6.3 Towards Small and Fully Connected Networks 95
6.3.1 Setup 1: 11 Boltzmann Machines with 3 Neurons Each 95
6.3.2 Setup 2: Small Networks with 10 Neurons Each 98

7 Summary and Outlook 103

8 Appendix 107
8.1 Acronyms . 107
8.2 Parameters . 108
8.3 Simulation Software . 111
8.4 HICANN Wafer System . 112
8.5 Illustration of the Beta Distribution . 114
8.6 Illustration of the Interconnection Weight Distribution 115
8.7 Proof for the Free Membrane Potential Autocorrelation Function 116
8.8 Additional Results . 117

8.8.1 Sampling Quality Dependence on the Calibration Time 117
8.8.2 k-th Neighbour Interval Distribution for Very Large Networks . 117
8.8.3 Sampling Quality with Bursting Noise Neurons 119
8.8.4 Autocorrelation of Noise from Randomized Boltzmann Machines 119
8.8.5 Comparison of the Two Calibration Schemes 120
8.8.6 Mean-to-Width Ratio of the Interconnections 123
8.8.7 Shorter Sampling Time for Training Updates 123
8.8.8 DKL after Training for Different Weight Ratios 124
8.8.9 Sea of Boltzmann Machines as a Large Boltzmann Machine . . . 125

Bibliography 127

Acknowledgments 135

IV

It is an important and popular fact that things are not always what they
seem. For instance, on the planet Earth, man had always assumed that he
was more intelligent than dolphins because he had achieved so much – the
wheel, New York, wars and so on – whilst all the dolphins had ever done was
muck about in the water having a good time. But conversely, the dolphins had
always believed that they were far more intelligent than man – for precisely
the same reasons.

. . . In fact there was only one species on the planet more intelligent than
dolphins, and they spent a lot of their time in behavioural research laboratories
running round inside wheels and conducting frighteningly elegant and subtle
experiments on man. The fact that once again man completely misinterpreted
this relationship was entirely according to these creatures’ plans.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

1 Introduction

The fundamental building blocks of information processing in the mammalian brain
are believed to be single, vastly interconnected cells called neurons. These transmit
information via short all-or-nothing events called action potentials or spikes. However,
spike trains recorded from single cortical neurons have been observed to exhibit strong
trial-to-trial variability in vivo when repeatedly exposed to identical visual stimuli (Henry
et al., 1973; Schiller et al., 1976; Snowden et al., 1992; Vogels et al., 1989; Holt et al.,
1996; Azouz and Gray , 1999; Fiser et al., 2004). Contrary, in vitro measurements showed
that cortical neurons deterministically transform time-dependent synaptic input currents
into output spike trains (Mainen and Sejnowski , 1995). Thus, the variability observed
in vivo can mainly be attributed to the ongoing cortical background activity (Arieli
et al., 1996) which is absent in vitro, but whether the seemingly stochastic and irregular
behavior of cortical neurons plays any role in neural coding is still an open debate.

If we assume that noise serves no functional purpose, the neural code used by cortical
neurons has to be able to cope with the observed variations. One possibility are rate or
population codes, which disregard individual spiking times and only take into account the
average frequency of either single neurons or populations thereof (Paradiso, 1988; Vogels ,
1990; Shadlen and Newsome, 1994; Lee et al., 1998). Another coding scheme are temporal
codes, i.e., information is rather encoded in the exact spike times of each neuron instead
of averaged rates. Of course, this way of encoding information is highly susceptible to
noise. However, it is believed that the underlying noise might enable cortical neurons
to perform stochastic computations (Hoyer and Hyvarinen, 2003; Körding and Wolpert ,
2004; Rolls and Deco, 2010; Roumani and Moutoussis, 2012), turning neuronal noise
into a crucial and even necessary part of information processing in the cortical area of
the brain.

Recently, it was shown that the spike-based neural sampling framework with abstract
neurons introduced by Buesing et al. (2011) can be mapped to a network of Leaky
Integrate-and-Fire neurons (Petrovici et al., 2013, 2015a; Petrovici , 2016), enabling
sampling from Boltzmann distributions over binary variables with a population of
neurons using biologically inspired mathematical models. Promising applications are
fast and energy-efficient implementations of Boltzmann machines (Ackley et al., 1985) on
state-of-the-art accelerated neuromorphic hardware (Stöckel , 2015; Petrovici et al., 2015b;
Kungl , 2016) as well as software implementations of large restricted Boltzmann machines
(Salakhutdinov et al., 2007) that are trained on real-world problems, for example image
classification and generation of the MNIST handwritten digit database (Leng , 2014;
Martel , 2015; Leng et al., 2016).

1

1 Introduction

Since Leaky Integrate-and-Fire neurons are inherently deterministic, every neuron is
commonly fed with high-frequency excitatory and inhibitory Poisson noise to realize
stochastic dynamics. This is also the usual method of reproducing the stochastic behav-
ior of neurons found in the cerebral cortex (Gerstner and Kistler , 2002). In software
simulations, even though adding external Poisson noise increases the total simulation
time, the number of neurons of a finite-sized network that can be provided with inde-
pendent Poisson noise is otherwise not limited. This changes if we, for instance, consider
very-large-scale integration (VLSI) of neural networks in silicon. In such devices, the
network is commonly restricted to a certain volume and can only be accessed or fed
with external inputs via its surrounding surface area, i.e., the available interfaces or
buses attached to the device. This strictly limits the maximum bandwidth of external
input that can be provided to the network (see Fig. 1.1). Therefore, unlike in software
simulations, the amount of available noise is limited, making it a valuable resource that
has to be managed efficiently.
Prominent examples of such state-of-the-art neuromorphic hardware are the Spikey

neuromorphic chip (Schemmel et al., 2006; Pfeil et al., 2013) and the HICANN (High
Input Count Analog Neural Network) wafer system (Schemmel et al., 2008, 2010), both de-
veloped at Heidelberg University. The HICANN chip is equipped with a high-bandwidth
on-chip and on-wafer bus infrastructure for inter-neuron communication. However, these
buses cannot be directly connected to external components. Instead, an additional in-
terface, with limited bandwidth due to the high integration density on-chip, is used
for off-chip and off-wafer communication (for details, see App. 8.4). In fact, in a recent
implementation of small Boltzmann machines on a single HICANNv4 chip, the external
bandwidth was only able to support a 2-neuron Boltzmann machine (Kungl , 2016).
Currently, there exist two approaches to deal with bandwidth limitations:

• The available pool of noise inputs may simply be distributed among the neurons
used in the experiment, allowing each input to connect to several on-chip neurons
instead of just one. To reach adequate noise frequencies, some neurons will therefore
receive similar inputs, leading to shared-input correlations (Bytschok , 2011). Even
though these additional correlations have a negative effect on the sampling quality
of Boltzmann machines, it was recently demonstrated by I. Bytschok and M.
Petrovici (personal communication) that this can be compensated by adjusting
the weights and biases of Boltzmann machines appropriately, for example via
training.

• Instead of using Poisson sources, the spike trains of neurons from a balanced
recurrent network with strong inhibitory feedback can be used (Jordan, 2013;
Jordan et al., 2015), see Fig. 1.1. Such recurrent networks have the advantage
that shared-input correlations get compensated by negative correlations between
neurons of the network, caused by strong inhibitory feedback. This way, a small
pool of neurons forming a recurrent network (colloquially dubbed a "sea of noise")
can be used to feed a much larger functional network with noise.

2

Figure 1.1: (left) The number of independent external sources available to a pool of
neurons (circles) is limited by the external bandwidth (ellipse). Therefore,
some neurons have to share Poisson inputs (P), introducing shared-input
correlations. (right) A recurrent neural network with an excitatory (E) and
inhibitory (I) population of neurons can be used as an effective noise source
for a functional network. Image taken from Jordan et al. (2015).

In this thesis, we will explore an alternative approach of providing noise to functional
neural networks that does not utilize sources which are specialized on generating noise,
as is the case in the two previously presented methods. Our approach is inspired by
the mammalian brain, where cortical neurons exhibit seemingly noisy behavior, but are
not subject to any external Poisson sources. In fact, the brain most probably has no
functional areas that are specialized on generating noise input nor does it receive noise
from any external sources (Gerstner and Kistler , 2002). However, every cortical neuron
constantly receives input from over 104 presynaptic partners and is thus exposed to a high-
frequency bombardment of spikes originating from the ongoing background activity of
the cortical network alone (Arieli et al., 1996; Fourcaud and Brunel , 2002). Consequently,
it appears plausible that different functional components of the brain supply each other
with noise. The question then arises whether a similar setup can be realized with Leaky
Integrate-and-Fire Boltzmann machines. In fact, it was recently shown in Korcsák-Gorzó
(2015) that sparse and inhibition-dominated Boltzmann machines produce uncorrelated
and Poisson-like spike trains that might be used as stochastic input for other functional
networks. This is a promising result and supports the idea that spikes from Boltzmann
machines could be used as noise for other Boltzmann machines.

The goal of this thesis is to show that a network of Boltzmann machines can be used
to reduce the number of needed Poisson sources by compensating the missing stochastic
input with the intrinsic background activity of the network. Broadly speaking, every
Boltzmann machine of the network uses the spike trains of neighbouring Boltzmann

3

1 Introduction

machines as noise input (see Fig. 1.2). This would mimic the continuous bombardment
observed in the cerebral cortex and allow functional networks to perform stochastic
computations by utilizing the ongoing background activity of other functional networks.
Moreover, returning to our initial bandwidth problem on neuromorphic hardware, such
a "sea of Boltzmann machines" would allow us to exploit the high-bandwidth infra-
structure available for on-chip and on-wafer communication on HICANN, circumventing
the bottleneck for external stimuli.

This thesis is structured as follows: First, a short introduction of the necessary theoret-
ical background will be given. Afterwards, we will study whether spike trains generated
by arbitrary Boltzmann machines can be used to replace Poisson sources. Finally, net-
works of Boltzmann machines will be implemented to study how slowly reducing the
strength, frequency or number of external inputs affects the sampling quality. As a
consequence of these studies and a final result, we will indeed be able to show that it
is possible to build networks of Boltzmann machines without any external input that
are able to sample from their target Boltzmann distributions almost as well as if each
neuron was receiving noise from independent Poisson sources.

Figure 1.2: Illustration of the "sea of Boltzmann machines", which consists of many
interconnected Boltzmann machines (connected blue dots). Inspired by the
cerebral cortex, stochasticity is provided by the intrinsic noise or background
activity of the surrounding network instead of feeding every neuron with
external Poisson spikes. In our case, every Boltzmann machine of the network
receives spikes from the surrounding Boltzmann machines as noise. Image
modified from Wikimedia Commons (2014).

4

2 Theoretical Background

In the following sections, the theoretical requirements needed for this thesis are outlined.
First, a brief overview on neuron models, especially the Leaky Integrate-and-Fire

(LIF) neuron model will be given. For a more in-depth discussion of neuron and synapse
dynamics, see Gerstner and Kistler (2002); Bytschok (2011); Petrovici (2016).
Afterwards, LIF sampling as a computational method in spike-based networks and

its application to state-of-the-art machine learning problems will be highlighted. Again,
for further details see Leng (2014); Martel (2015); Breitwieser (2015); Petrovici (2016).

2.1 Leaky Integrate-and-Fire (LIF) Neuron Model

A central principle of modern neuroscience is the so-called neuron doctrine, introduced
by Santiago Ramón y Cajal and shortly after named by Wilhelm von Waldeyer in
1891 (Waldeyer , 1891; Guillery , 2005; De Carlos and Borrell , 2007). It states that
the elemental building blocks or atomic units of information processing in the brain
are single cells called neurons. Interconnected through synapses, they build a complex
network consisting of approximately 86 billion neurons in the human brain (Azevedo
et al., 2009).

In a simplified view, a biological neuron consists of three distinct parts (see Fig. 2.1):

• the dendritic tree, which passes on incoming signals from neighbouring neurons,

• the soma, where the accumulation of these incoming signals may trigger an out-
going signal,

• the axon, which transmits outgoing signals to other neurons in the network.

Instead of using continuous-time signals, neurons interact via discrete "all-or-nothing"
events called Action Potentials (AP) or spikes. An AP is characterized by an abrupt
depolarization of the membrane potential of the neuron, followed by a phase of strong
hyperpolarization (called refractory period) during which it cannot be depolarized again.
The first detailed explanation of APs was given by Alan Lloyd Hodgkin and Andrew
Huxley in 1952 (Hodgkin and Huxley , 1952) based on observations in the squid giant
axon (see Fig. 2.2).
Even though neurons have already been proposed in 1891 as the fundamental unit

of information processing, it remains unclear how information is actually encoded and

5

2 Theoretical Background

dendrites

soma

axon

dendrites

soma

axon

Figure 2.1: (left) Pyramidal neuron of the rat prefrontal cortex stained with the Golgi-
Cox method. Image modified from Perez-Costas et al. (2007). (right) Draw-
ing of a single neuron by Cajal. It consists of three major parts: (i) The soma
containing the cell nucleus, (ii) dendrites which extend from the soma and
collect input from other neurons and (iii) the outgoing axon which transmits
signals to other neurons. Image modified from Gerstner and Kistler (2002).

processed in the human brain (Gerstner and Kistler , 2002). One possibility to improve
our understanding of neuronal coding is to complement biological studies with software
simulations and hardware emulations of neural networks. However, since realistic bio-
logical systems are rather complex and contain a multitude of dynamic variables, we
have to use simpler models that encompass the most fundamental properties of neuronal
dynamics. One such model is the Leaky Integrate-and-Fire (LIF) neuron model (Lapique,
1907), which is described by a simple first-order ordinary differential equation (ODE) for
the membrane potential of the neuron and a threshold condition for triggering spikes:

cm
du

dt
= gL (EL − u(t)) + Isyn , (2.1)

u(ts) ≥ ϑ ⇒ u(t ∈ [ts, ts + τref]) = ureset . (2.2)

Similarly to the Hodgkin-Huxley model (see Fig. 2.2), the cell membrane of the neuron is
modelled as a capacitor with capacitance cm connected to a resistor R with conductance
gL = R−1. The effects of incoming spikes from neighbouring neurons are represented as
charge fluxes Isyn onto the capacitor. The resulting change in membrane potential due to
a presynaptic spike is called a postsynaptic potential (PSP). Note that throughout this

6

2.1 Leaky Integrate-and-Fire (LIF) Neuron Model

K NaRC

I

Figure 2.2: (left) Recording of an AP of a squid giant axon by Hodgkin and Huxley
(1939). Note the strong overshoot followed by a phase of hyperpolarization.
The y-scale is given in mV, the time scale in terms of cycles (bottom) with
2ms per cycle. (right) Abstract model used by Hodgkin and Huxley to
describe the creation of APs. The cell membrane of the neuron is modelled
by a capacitor C that can leak charges through a conductance R−1. In
addition, there are two channels for K+ and Na+ ions with voltage-dependent
conductance. A strong step-current I leads to an opening of the two ion
gates on different time scales. For instance, the strong overshoot is produced
by an initial inflow of Na+ into the cell. The hyperpolarization originates
from a delayed inactivation of the Na+ gates and opening of the K+ gate
leading to a strong outflow of K+ ions. Image taken from Gerstner and
Kistler (2002).

thesis, neurons will be treated as being point-like, i.e., possible effects due to dendritic
transmission of PSPs will be neglected. If the membrane potential reaches the threshold
ϑ, it emits a spike and becomes refractory for a time period τref . During this time, the
neuron is not able to emit another spike. This is implemented by clamping the membrane
potential to the reset potential ureset, mimicking the period of hyperpolarization observed
in biology. Further note that the characteristic shape of APs is reduced to the spike
time ts, which corresponds to the rising flank of the AP, and the clamping mechanism.
Therefore, we completely neglect the shape of the AP. This is a valid simplification
as it is often generally assumed that the shape of all APs is identical and contains no
information (Gerstner and Kistler , 2002; Dayan and Abbott , 2001).
The dynamics of a LIF neuron is governed by two terms: A drift term that leads to

an exponential decay towards the leak potential EL and the synaptic input Isyn. The
latter can be described in two ways:

• Current-Based Synapses (CUBA): Each incoming spike leads to an influx of charge,
i.e., a direct increase or decrease of the membrane potential. These PSPs add up
linearly.

7

2 Theoretical Background

• Conductance-Based Synapses (COBA): Incoming spikes increase the conductance
of the dendritic membrane, leading also to a temporary increase in charge flux. In
contrast to the CUBA model, they induce a nonlinear interaction of PSPs.

The CUBA model neglects more complex dynamics at the synaptic cleft (the location
where presynaptic - and postsynaptic terminal meet, see Fig. 2.3) and describes the
resulting charge flux into the soma. Contrary, the COBA model is directly inspired
from chemical synapses, where incoming spikes lead to an opening of ion gates at the
postsynaptic terminal, i.e., the membrane conductance of the postsynaptic cell is locally
increased. This increase in conductance leads to a passive flow of charges through the
membrane.

Figure 2.3: Schematic representation of a chemical synapse. A spike from the presynaptic
neuron opens the voltage-gated calcium channels at the presynaptic ter-
minal. The inflowing Ca++ ions bind to the synaptic vesicles containing
neurotransmitters and let them fuse with the cell membrane. This way, the
neurotransmitters are released into the synaptic cleft and diffuse towards
the receptors of the ligand-gated ion channels of the neighbouring dendritic
membrane. As soon as they dock onto the receptors, the ion channels are
opened, locally increasing the conductance of the postsynaptic cell. Image
modified from Wikimedia Commons (2015).

8

2.1 Leaky Integrate-and-Fire (LIF) Neuron Model

In the LIF model, the synaptic term is implemented as follows:

ICUBA
syn =

∑
syn. k

∑
spikes s

wkε(t− ts) , (2.3)

ICOBA
syn =

∑
x∈{e,i}

∑
syn. k

∑
spikes s

wkε(t− ts)(Erev
x − u) . (2.4)

In both cases, we sum up the inputs coming from all synapses. However, whether a
presynaptic spike leads to an inhibitory or excitatory PSP is decided differently. In the
CUBA model, this is determined by the sign of the synapse or interaction strength wk.
But in the COBA model, the presynaptic spikes only lead to a change in conductance

gsyn
x (t) =

∑
syn. k

∑
spikes s

wkε(t− ts) , (2.5)

where the direction of charges flowing passively through the membrane is governed by
the reversal potential Erev

x . More precisely, an increase of the conductance gsyn
x pulls the

membrane potential towards the respective reversal potential Erev
x . As in the Hodgkin-

Huxley model, excitatory PSPs can mostly be attributed to the inflow of Na+ ions
and inhibitory PSPs to the outflow of K+ ions. Thus, the excitatory and inhibitory
reversal potentials are very close to those of Na+ and K+ gates, i.e., Erev

Na+ ' 50mV and
Erev

K+ ' −77mV (Gerstner and Kistler , 2002). Note that wk is always positive in case of
the COBA model as it is a conductance.
The resulting effect of a presynaptic spike at time ts is described by an interaction

kernel ε(t− ts). As already discussed, in the COBA model a presynaptic spike leads to
an increase in conductance which will then exponentially decay back to its initial value
on a time scale governed by the synaptic time constant τsyn. This can be described by a
simple exponential interaction kernel

ε(t− ts) = θ(t− ts) exp (−t− ts
τsyn

) . (2.6)

A more thorough discussion of synaptic interactions and possible interaction kernels
can be found in Petrovici (2016). Throughout this thesis, the COBA model with ex-
ponential interaction kernel will be used. The resulting ODE for COBA LIF neurons
reads:

cm
du

dt
= gL (EL − u) + gsyn

e (Erev
e − u) + gsyn

i (Erev
i − u) , (2.7)

gsyn
x (t) =

∑
syn. k

∑
spikes s

wk θ(t− ts) exp (−t− ts
τsyn

) , x ∈ {e, i} , (2.8)

with the threshold condition given by Eq. 2.2.

9

2 Theoretical Background

2.2 Tsodyks-Markram Model

In the previous section, the interaction between neurons via chemical synapses was
introduced (see Fig. 2.3). However, when the presynaptic neuron is firing with a high
frequency, the resources in the presynaptic terminal will be slowly depleted and less
neurotransmitters will be released per presynaptic event. This corresponds to a time
modulation of the interaction strength wsyn between pre - and postsynaptic neuron.

One model that describes such short-term plasticity (STP) phenomenologically is the
Tsodyks-Markram model (TSO) (Tsodyks and Markram, 1997). In this thesis, we will use
a simplified version thereof by Fuhrmann et al. (2002); Maass and Markram (2002). To
incorporate TSO, each synapse gets an additional parameterR ∈ [0, 1] which corresponds
to the amount of resources still available, e.g. vesicles containing neurotransmitters. It
is governed by the following ODE:

dR

dt
=

1−R
τrec

− USERδ(t− ts) . (2.9)

The first term describes the recovery of used resources (1 − R) with time constant
τrec. The second one gives the fraction of resources USER that are depleted whenever
a presynaptic spike arrives, e.g. at time ts. USE can take values between [0, 1], whereas
USE = 1 stands for a complete utilization of all resources in one spike.

0 10 20 30 40 50

time [ms]

um[a.u.]

no TSO

TSO

Figure 2.4: Membrane potential of an exponential-shaped COBA LIF neuron that re-
ceives a presynaptic spike every refractory period (τref = 10ms). Without
TSO (blue curve), successive PSPs add up and the maximum membrane po-
tential grows in the beginning. With TSO (green curve, τrec = τsyn = 10ms),
this effect can be mitigated and the initial build-up declines.

10

2.3 Stochastic Computing in Spiking Networks

The synaptic connection strength is then simply multiplied by the fraction of resources
used up during the spike

wsyn → wsyn · USER . (2.10)

Note that after a presynaptic event, the PSP has an exponential tail that lasts longer
than the refractory period. Hence, a series of incoming presynaptic spikes, all with a
distance of τref , will lead to an initial build-up of the total PSP height. TSO can be used
to compensate this effect by setting τrec = τsyn and USE = 1, see Fig. 2.4, and will be
utilized later in Chap. 2.3.2 for this purpose.

2.3 Stochastic Computing in Spiking Networks

Over the past decades, experimental findings showed that cortical neurons in the mam-
malian brain behave inherently stochastic in vivo. It has been proposed that this stochas-
ticity is a hallmark of ongoing probabilistic computations (Hoyer and Hyvarinen, 2003;
Körding and Wolpert , 2004). In such models, it is generally assumed that neural networks
utilize this inherent noise to deal with incomplete or noisy data and prevent decision
deadlocks, e.g. the ability to re-evaluate a previous decision or classification (Rolls and
Deco, 2010; Roumani and Moutoussis , 2012).

One prominent example of such behavior is perceptual bistability, where an image
allows several interpretations of its content. For instance, in Fig. 2.5 the animal on the
left image can either be identified as a duck or a rabbit. Similarly, the Necker cube (right
image) can either be seen from above or from below. Between both cases, the quadratic
surfaces exchange their position in the cube, i.e., from back - to front side and vice versa.

Figure 2.5: Two well-known examples of perceptual bistability. In both images, there
are two ways to interpret the image’s content. However, instead of seeing a
superposition of both interpretations, the brain is swapping back and forth
between the two. (left) One can either see a duck or a rabbit. Image modified
from Wikimedia Commons (2012). (right) The cube can either be seen from
above or from below. Image taken from Wikimedia Commons (2007).

11

2 Theoretical Background

Note that one does not see a superposition of both images, e.g. the duck superimposed
with the rabbit, but that our perception switches back and forth in a random manner
between both possibilities. A similar phenomenon is binocular rivalry, where a different
image is presented to each eye. Instead of seeing a superposition of both images, the
brain again switches back and forth between the two (see Fig. 2.6).

Figure 2.6: A common setup for binocular rivalry. The left eye sees red stripes, tilted
by −45◦ and the right eye sees blue stripes, tilted by 45◦. Instead of seeing
a superimposed image, i.e., both the red and blue stripes overlapping, the
observed image switches back and forth between the two presented stripe
patterns. Image taken from Dieter and Tadin (2011).

One possibility to explain this behavior is the following: First, the brain does not
simply choose the most likely interpretation of the image. It seems to be switching
between interpretations with high probabilities, in our case ’rabbit’ and ’duck’. This
can be described as sampling from a posterior distribution that encodes the possible
interpretations of the picture.
Sampling is a well-known technique to draw representative samples from a given

probability distribution. This is particularly useful for high-dimensional distributions
that cannot be computed analytically or numerically. Popular examples of sampling al-
gorithms are the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings , 1970),
Gibbs sampling (Geman and Geman, 1984) and Hamiltonian Monte Carlo sampling
(Duane et al., 1987).

In our example, the probability landscape of the posterior distribution would consist
of two large maxima, one for the rabbit and one for the duck. The network then samples
from this distribution, i.e., it starts to explore one of the maxima (e.g. the duck / red
stripes), then randomly jumps into the other maximum (the rabbit / blue stripes),
exploring it until it jumps back, etc. (see Fig. 2.7).

12

2.3 Stochastic Computing in Spiking Networks

Figure 2.7: Exemplary probability landscape of a posterior distribution. Here, the two
maxima would represent the probability of the stimulus being identified
as the duck/red stripes or the rabbit/blue stripes. Instead of choosing the
interpretation with the highest probability, the neural network explores the
probability landscape by sampling from it (red dots). This enables the net-
work to switch back and forth between different maxima.

2.3.1 Neural Sampling

A method to realize stochastic inference in networks of spiking neurons was introduced
by Buesing et al. (2011). The so-called neural sampling is a generalisation of Gibbs
sampling and implements a network of abstract neurons with refractory period τ that
sample from a Boltzmann distribution

p(z) =
1

Z
exp(−βE(z)) (2.11)

with normalization Z and binary state variables z = (z1, z2, ...), zk ∈ {0, 1}. The state
of a neuron is encoded as zk = 1 if it is refractory and otherwise zk = 0. The membrane
potential of an abstract neuron is given by:

uk(t) = bk +
K∑
i=1

Wkizi(t) , (2.12)

where K is the total number of neurons, bk is the bias of neuron k andWki is the synaptic
weight between neuron i and k. If we compare this with the LIF model, the bias can be
seen as an offset current or the equilibrium value of the membrane potential, respectively.

13

2 Theoretical Background

The interaction term corresponds to the synaptic term, but with a rectangular PSP
instead of an integral over an exponential function. Note that, since we are sampling
from a Boltzmann distribution, the weights Wij are symmetric, i.e., Wij = Wji and
self-interactions are prohibited, Wii = 0 ∀i.

The key property of this network is the neural computability condition, which relates
the membrane potential of a neuron to the probability distribution we want to sample
from:

uk(t) = ln

(
p(zk = 1|z\k)
p(zk = 0|z\k)

)
, (2.13)

where \k denotes all indices but the kth one. In case of a Boltzmann distribution with
energy function

E(z) = −1

2

∑
i,j

Wijzizj −
∑
i

bizi (2.14)

and β = 1, we recover Eq. 2.12 for the membrane potential. From the neural computabil-
ity condition, we can derive the conditional probability of a single neuron to be in the
state zk = 1 depending on its membrane potential uk:

p(zk = 1|z\k) =
1

1 + exp (−uk)
= σ(uk) . (2.15)

Before we can discuss the actual sampling mechanism, we have to introduce an
additional variable ζk which simply counts how long neuron k has been refractory. If
neuron k spikes, we set zk = 1 and ζk = τ . Afterwards, ζk will count downwards in each
subsequent time step until it reaches 0, where it remains until the neuron spikes again.
This is illustrated in Fig. 2.8.

Finally, sampling is done in the following way:

1. Initialize the network in a state z′ = (z′1, z
′
2, ..., z

′
K).

2. Now update in a fixed order the state of each neuron. The transition probability
T k(zk, ζk|z′k, ζ ′k) for neuron k to change its state (z′k, ζ

′
k)→ (zk, ζk) is given by:

T k(1, τ | (z′k, ζ
′
k) ∈ [(0, 0), (1, 1)]) = σ(u′k − ln τ) , (2.16a)

T k(0, 0 | (z′k, ζ
′
k) ∈ [(0, 0), (1, 1)]) = 1− σ(u′k − ln τ) , (2.16b)

T k(1, ζ ′k − 1 | 1, ζ ′k ∈ [2, τ]) = 1 , (2.16c)
otherwise = 0 ,

14

2.3 Stochastic Computing in Spiking Networks

where already updated neurons are taken into account. Note that ln τ compensates
for longer refractory periods, as we will have τ 1-states after spiking (see Fig. 2.8).
This has to be fixed by increasing the number of 0-states accordingly, i.e., by
reducing the spiking probability. In the special case of τ = 1, neural sampling
reduces to Gibbs sampling.

3. After updating all neurons in sequence, the new state of the network is z. This
state is a fair sample of the underlying Boltzmann distribution. By repeating step
2, one obtains additional subsequent samples.

Figure 2.8: (left) The state of the neural network is determined by the refractory periods
of the neurons. If a neuron is refractory, it is in the 1-state, otherwise in the
0-state. Image taken from Petrovici et al. (2013). (right) Update scheme
of neural sampling. If the neuron is refractory, it will simply decrease to 1
in subsequent time steps. After the neuron leaves the refractory period, it
can either spike again immediately or transition into the 0-state, where it
remains until it spikes again with probability σ(uk− ln τ). Image taken from
Buesing et al. (2011).

2.3.2 LIF Sampling

Recently, it was proven that neural sampling can be carried over to a network of CUBA
and COBA LIF neurons (Petrovici et al., 2013, 2015a; Petrovici , 2016). It is therefore
possible to perform stochastic computations in a biologically inspired network of spiking
LIF neurons by sampling from a Boltzmann distribution with the states again being
encoded via the refractory and non-refractory state of the neurons.
To find a mapping between the parameters of the abstract neurons used in neural

sampling and the more complex COBA LIF neurons, two preconditions have to be met:

1. LIF neurons are inherently deterministic and only spike when trespassing the
threshold (see Eq. 2.7). The probability of spiking at a certain membrane potential,

15

2 Theoretical Background

also called the activation function, is zero below the threshold. Therefore, we have
to add a source of randomness to our network in order to make the LIF neurons
stochastic.

2. The activation function encodes the conditional probabilities of the target Boltz-
mann distribution. Hence, we also want the activation function of our LIF neurons
to have the same shape as the logistic activation function used in neural sampling
(see Eq. 2.15).

For COBA LIF neurons, it can be shown that both conditions are met when we push
the neurons into the high-conductance state. This is done by adding excitatory and
inhibitory high-frequency Poisson noise to each neuron.

First, the Poisson noise (or shot noise) is generated by a discrete Poisson process η(t)
which is defined by the following two equations:

〈η(t)〉 = ν , (2.17a)
〈η(t)η(t′)〉 = 2πδ(t− t′) . (2.17b)

A Poisson source emits spikes at times (t1, t2, t3, ...) with frequency ν. The number of
spikes n in a given time interval T is distributed according to a Poisson distribution

pν(n) =
(νT)n

n!
exp(−νT) (2.18)

and the actual spike times are all completely independent, i.e., the generated noise is
completely uncorrelated as demanded by Eq. 2.17b.

It can be shown that, as long as we are in the high-conductance state, the COBA LIF
equation takes the form of the Langevin equation of the Ornstein-Uhlenbeck process
(Uhlenbeck and Ornstein, 1930)

du(t) = θ · (µ− u(t))dt+ σdW (2.19)

with the following parameters (Petrovici , 2016):

θ =
1

τsyn

, (2.20a)

µ =
gLEL +

∑
j νjwjE

rev
j τsyn

〈gtot〉 , (2.20b)

σ2

2
=

∑
j νjw

2
j (E

rev
j − µ)2τsyn

2 〈gtot〉2
, (2.20c)

gtot(t) = gL +
∑
j

gsyn
j (t) . (2.20d)

16

2.3 Stochastic Computing in Spiking Networks

The Ornstein-Uhlenbeck process describes the Brownian motion dW of a particle
(also known as Wiener process) with an additional drift or attractor term, respectively.
In our case, the drift term is given by the membrane’s leak and the Brownian motion
or random walk originates from the high-frequency bombardment of the excitatory and
inhibitory Poisson noise, where each spike increases or decreases the membrane potential
by a small amount.

The stationary solution of the Ornstein-Uhlenbeck process is a Gaussian distribution
for the membrane potential with mean µ and standard deviation σ ·

√
2θ
−1
. Thus, the

membrane is now symmetrically fluctuating around a mean value allowing the neuron
to spike even though the mean membrane potential is below threshold (or not spike,
even though the mean membrane potential is above threshold). The general solution of
the Ornstein-Uhlenbeck process for finite times t given an initial membrane potential
u0 is given by:

p(u, t|u0) =

√
θ

πσ2(1− e−2θt)
exp

(
− θ

σ2

(u− µ+ (µ− u0)e−θt)2

1− e−2θt

)
. (2.21)

For t = 0, this corresponds to a delta peak at u0, i.e., the membrane potential is
perfectly localized at an arbitrary initial value u0. Due to the drift term, it is drawn to
the mean value µ. The diffusion leads to a widening of the distribution until the final
width σ ·

√
2θ
−1

is reached (see Fig. 2.9).

1 0 1 2
membrane potential [a.u.]

0

5

10

p(u, t|u0)

initial distr.

stationary distr.

Figure 2.9: Solution of the Ornstein-Uhlenbeck process at different times for u0 = 2.0,
µ = 0, θ = 2.0 and σ = 0.5, all unitless. The initial distribution is a delta
peak at u = u0 (blue). Firstly, because of the drift term the particle will be
drawn to the equilibrium value µ. Secondly, the distribution widens due to
Brownian motion (dashed). Since we have an attracting force towards the
equilibrium value and a diffusion term acting outwards, the distribution will
settle at a stationary solution with finite width for t→∞ (red).

17

2 Theoretical Background

The ODE of the COBA LIF neuron can also be rewritten in the following way:

τeff(t)
du

dt
= ueff(t)− u(t) , (2.22a)

ueff(t) =
gLEL +

∑
j g

syn
j (t)Erev

j

gtot(t)
, (2.22b)

τeff(t) =
cm

gtot(t)
. (2.22c)

These equations describe the dynamics of u(t) as the decay towards a time-dependent
equilibrium value ueff(t) with an effective membrane time constant τeff(t). Also note that
the synaptic input changes the total conductivity gtot(t). If we increase the synaptic
input, the total conductivity rises and the effective membrane time constant becomes
smaller. Hence, in the high-conductance state, the membrane dynamics are very fast
due to the high conductance. Also note that u(t) is a low-pass filtered version of ueff(t),
but ueff(t) is not clamped to the reset potential after spiking. In addition, we obtain
τeff → 0 and thus u(t) ' ueff(t) in the limit of high input rates (see Fig. 2.10).

Figure 2.10: Membrane potential of a COBA LIF neuron in the high-conductance state.
(top) Trace of the membrane potential. Spikes are highlighted by black
bars, followed by the refractory period where the membrane potential is
clamped to the reset potential. (bottom) Zoom in of the picture above.
In blue, the membrane potential of the neuron and in red the trace of the
effective or free membrane potential are shown. After a refractory period, the
membrane potential decays back towards the effective membrane potential.
If ueff is above the threshold, this leads to another spike. If it is below the
threshold, the neuron remains silent. The gray areas highlight the refractory
period. After each refractory period, the expected distribution of the free
membrane potential (a Gaussian) is drawn. Image modified from Petrovici
(2016), original from Petrovici et al. (2013).

18

2.3 Stochastic Computing in Spiking Networks

Combined with the solution of the Ornstein-Uhlenbeck process, this can be used to
prove that the activation function in the high-conductance state can indeed be approx-
imated by a logistic function. The method used is called autocorrelation propagation
formalism, see Petrovici (2016) for a thorough discussion.

To translate the theoretical bias and weights from neural sampling, we now have to
do the following:

1. First, we have to determine the activation function of the LIF neuron. This is done
by measuring the activity at different leak potentials EL of the neuron with strong
excitatory and inhibitory noise, whereas the activity is defined as the ratio of the
time the neuron was refractory and the total simulation time. After obtaining the
activation curve, we can perform a logistic fit

σ(u, α, up0.5) =
1

1 + exp (−u−up0.5
α

)
, (2.23)

where up0.5 is the membrane potential at which the neuron is refractory with a
probability p(z = 1) = 0.5. α is a factor determining the slope of the activation
function.

2. The bias bk can be translated by demanding that, without any synaptic input
from other neurons, the activities of abstract neuron and LIF neuron have to be
equal, i.e.,

1

1 + exp (−bk)
!

=
1

1 + exp (−u−up0.5

α
)

(2.24)

and therefore

EL = (αb+ up0.5)
〈gtot〉
gL

. (2.25)

3. The weights can be translated by setting the integral of the PSPs of abstract and
LIF neurons equal: ∫ τref

0

PSPabstract dt
!

=

∫ τref

0

PSPLIF dt . (2.26)

For abstract neurons, the PSPs have a simple rectangular shape with height Wij

and length τref . The PSPs of COBA LIF neurons are more complicated since
we have to integrate over exponential functions with time-dependent exponents.
However, in case of the high-conductance state, an accurate approximation of this

19

2 Theoretical Background

integral can be found analytically and we obtain a difference of exponentials as
PSP shape. Hence, by equalizing the integrals over the refractory period of the
PSPs, we can derive a translation rule for the weights:

wLIF
ij = βW abstract

ij , (2.27)

β =
αcmτref(

1
τsyn
− 1

τeff
)

Erev
ij − 〈u〉

[
τsyn

(
e
− τref
τsyn − 1

)
− τeff

(
e
− τref
τeff − 1

)]−1

. (2.28)

The intuitive explanation for this rule is that a presynaptic spike should have the
same net effect on the membrane potential of both abstract and LIF postsynaptic
neurons, i.e., the same net flux of ’charges’.

Finally, the PSPs of LIF neurons decay exponentially, thus we will always have interac-
tion remaining after the refractory period. To compensate for unwanted build-ups from
overlapping PSPs during bursts, one can use STP (see Chap. 2.2). After translating the
theoretical parameters, the LIF network can be used to sample from the given target
distribution, as demonstrated in Fig. 2.11.

Figure 2.11: Sampling from a Boltzmann distribution over binary variables with COBA
LIF neurons. (top) Raster plot showing the spike times of a five-neuron
network. The spike times are sufficient to calculate the states of the network.
(bottom) The target distribution is given in red, the sampled one in blue.
As we can see, the LIF neurons produce a close approximation of the
desired target distribution. Note the logarithmic scale on the y-axis. Image
modified from Petrovici et al. (2013).

20

2.3 Stochastic Computing in Spiking Networks

2.3.3 Kullback-Leibler Divergence

At this point, we need a measure that quantifies how accurately our LIF networks are
actually sampling from their respective target distribution.
A standard measure is the Kullback-Leibler divergence (Kullback and Leibler , 1951),

also denoted as DKL and sometimes called relative entropy, which can be motivated as
follows:

First, we assume a set of symbols X = (x1, x2, ...) and the probabilities of their
occurrence pX = (px1 , px2 , ...). For instance, X could be the English alphabet and pX
the frequency of those letters in English literature. If we want to store, for example, a
text file or a book, the minimal mean memory required per sign is given by the Shannon
entropy (Shannon, 1948)

H(pX) = −
∑
i

pxi ln(pxi) . (2.29)

ln(pxi) is the information content of the symbol xi. Therefore, the entropy gives us a
measure for the mean information content of the set of symbols X. Now, if we do not
know the underlying distribution pX but only an approximation qX , the mean storage
needed per symbol is

H(pX ||qX) = −
∑
i

pxi ln(qxi) , (2.30)

where we assign the information content ln(qxi) to each symbol, but the real occurrence
of the symbol is given by pxi . The redundant amount of storage that we need because
we are not using the correct distribution to encode the symbols is given by the Kullback-
Leibler divergence:

DKL(pX ||qX) = H(pX ||qX)−H(pX)

=
∑
i

pxi ln

(
pxi
qxi

)
. (2.31)

Note that the DKL is only zero for pX = qX , however it is not a metric (for instance
it is not symmetric). To allow sampled probabilities of zero and to ensure that the DKL

remains monotonic during sampling, we calculate it in the following way:

Dused
KL =

∑
i

psampled
i ln

(
psampled
i

ptarget
i

)
. (2.32)

A typical DKL trace for LIF sampling is shown in Fig. 2.12. In the beginning, we
have almost no samples and therefore the approximation of the target distribution is

21

2 Theoretical Background

unreliable, which is reflected in the high DKL value. During sampling, the DKL decreases
but saturates after a certain time. This saturation does not occur for other sampling
methods, like Gibbs sampling or sampling with abstract neurons. There are several
reasons for this behavior:

1. The activation function does not exactly match a logistic function, even though it
can be fitted by one, and resembles rather an error function.

2. The translation rules are only approximations. For example, we replaced time-
dependent variables by their expectation values. Furthermore, the weight transla-
tion was derived by matching the PSP shapes of abstract and LIF neurons, which
is also merely an approximation.

3. The PSP shape of LIF neurons is not rectangular and has a contribution for times
larger than the refractory period, i.e., when the interaction is already over in case
of abstract neurons.

Figure 2.12: Typical DKL curves obtained from LIF sampling (solid lines). For early
readout times, when we have only a small amount of samples, the sampled
distribution does not agree with the target distribution. This is reflected
in the high DKL. During sampling, the DKL decreases as we are getting
closer to the target distribution. However, LIF sampling does not converge
onto the target distribution due to systematic differences in the theory
of neural sampling and LIF sampling. In contrast, algorithms like Gibbs
sampling or neural sampling converge towards the target distribution by
design, i.e., towards DKL = 0 (dashed line). Image modified from Petrovici
et al. (2013).

22

2.4 Training Networks of Spiking Neurons

2.4 Training Networks of Spiking Neurons

2.4.1 Boltzmann Machines

Until now, we have shown how to set the parameters of a LIF network in order to sample
from a predefined Boltzmann distribution over binary variables. However, in real-world
applications, for instance image recognition, the underlying distribution is not known in
advance. Thus, it would be preferable to train the network on certain tasks, for instance
image classification, auditive recognition or as an artificial intelligence in e.g. (video)
games with human-like behavior.

There is a powerful model in machine learning that utilizes binary Boltzmann distri-
butions to perform such tasks: Boltzmann machines (Ackley et al., 1985), commonly
denoted as BMs. A fully visible Boltzmann machine is an undirected graph that con-
sists of several binary units, all connected via symmetric weights Wij ∀i, j, Wii = 0 ∀i.
The units can take the states 0 and 1, and the state vectors are distributed according
to a Boltzmann distribution with the already mentioned weights Wij and biases bi ∀i.
Note that LIF networks which sample from such Boltzmann distributions are in fact
Boltzmann machines.

z11 z12 z13 z14

z21 z22 z23 z24

W22

W11

W12

v1 v2 v3

h1 h2 h3 h4 h5

Wvh

Figure 2.13: Graphical representation of Boltzmann machines. (left) A fully visible BM
has connections between all neurons. (right) A restricted BM consists of
two layers, a so-called visible (v) and hidden (h) layer. Connections between
neurons within a layer are prohibited and only neurons of neighbouring
layers are connected. The neurons of the visible layer represent the net-
work’s input and output, for instance pixel values of an image we want to
classify and the corresponding image labels. The hidden layer increases the
representative power of the BM and acts as a feature detector. Image taken
from Petrovici (2016).

However, it turns out that training fully visible Boltzmann machines is rather inefficient
due to the sheer number of connections. For most applications, so-called restricted
Boltzmann machines (Salakhutdinov et al., 2007) are commonly used. They exhibit a

23

2 Theoretical Background

layered structure, reducing the number of possible connections since neurons of the
same layer are completely unconnected. Furthermore, the representational power of
these networks can be easily increased by adding more layers or increasing the number
of units in already existing ones. Such networks are known as deep Boltzmann machines
(Salakhutdinov and Hinton, 2009) due to their deep layered structure.

LIF BMs classifying data sets of the MNIST database of handwritten data (LeCun
et al., 1998) have been successfully implemented in Leng (2014). Not only did LIF
networks achieve state-of-the-art classification rates, it was also demonstrated that
TSO helps the network to switch faster between image classes while dreaming (Leng ,
2014; Martel , 2015; Leng et al., 2016). When dreaming, the visible layer is completely
unclamped and the whole network is allowed to develop freely, generating images similar
to those it was trained on. Conventional Gibbs sampling, which is usually used to sample
from Boltzmann machines, shows comparatively bad mixing properties, i.e., only very
few of the learned images are visited while dreaming, see Fig. 2.14. Thus LIF sampling
cannot only be used for image classification, but also as a very good generating model
of the trained data.

Figure 2.14: Output of a dreaming BM, generated with Gibbs sampling (left) and LIF
sampling (right). Different image classes are shown in different colors, the
gray line connects consecutively generated images. Gibbs sampling primar-
ily stays in one mode, i.e., produces mainly samples from one of the trained
images. LIF networks, however, can have very good mixing properties due
to short-term plasticity acting similarly to local temperature changes (β
in Eq. 2.11). The visualisation of the generated data shown here is called
t-Distributed Stochastic Neighbor Embedding (Maaten and Hinton, 2008).
Image taken from Leng et al. (2016).

24

2.4 Training Networks of Spiking Neurons

2.4.2 Contrastive Divergence

BMs can be trained with a very efficient algorithm called Contrastive Divergence (CD)
(Hinton, 2002, 2010), making them particularly attractive for machine learning tasks.
We will only derive the update scheme for fully visible BMs. The equivalent scheme for
restricted BMs, however, can be derived in a similar way. Again, see Petrovici (2016)
for more details.
The idea is the following: After running the network for a specified runtime, we

compare the generated state statistics with our target distribution or training data. If
there are differences (for example, the network was trained on the digit ’1’, but never or
rarely produces it), we adjust the parameters of the Boltzmann distribution such that
the desired states become more probable and undesired states less probable. The change
in probability of a state z dependent on the weights wij is:

∂p(z)

∂wij
=

∂

∂wij

(
e−E(z)∑
z’ e
−E(z’)

)
= p(z)zizj − p(z)

(∑
z’ z
′
iz
′
je
−E(z’)∑

z’ e
−E(z’)

)
. (2.33)

Dividing by p(z), we obtain the derivative of the log-likelihood. Note that maximizing
the log-likelihood is equivalent to maximizing the probability itself, since the log function
is strictly monotonic. Updating parameters this way is commonly known as Maximum
Likelihood learning. The ratio of sums on the right-hand side is simply the expectation
value of zizj over our current Boltzmann distribution, which we will call the model
average of zizj:

∂ ln p(z)

∂wij
= zizj − 〈zizj〉model . (2.34)

Averaging over the training data, we get:〈
∂ ln p(z)

∂wij

〉
data

= 〈zizj〉data − 〈zizj〉model . (2.35)

This result can be used to perform gradient ascent learning, i.e., to change the weights
into the particular direction in weight space that locally maximizes the log-likelihood:

∆wij = ηCD ·
(
〈zizj〉data − 〈zizj〉model

)
(2.36a)

= ηCD ·
(
p(zi = 1, zj = 1)data − p(zi = 1, zj = 1)model

)
. (2.36b)

25

2 Theoretical Background

Thus, the weight update can be rewritten as the difference of joint probabilities
between the target distribution (data) and the distribution of the network (model). ηCD ∈
[0, 1] is the learning rate. The update rules for the biases can be derived analogously:

∆bi = ηCD ·
(
〈zi〉data − 〈zi〉model

)
(2.37a)

= ηCD ·
(
p(zi = 1)data − p(zi = 1)model

)
. (2.37b)

For large Boltzmann machines, the model averages have to be obtained via sampling.
However, it is unclear how long one has to sample for convergence. Hinton (2002)
therefore proposed an update scheme where the averages are approximated after just a
few sampling steps n, for instance even n = 1. This is known as CD or CDn and can be
used to train LIF BMs on arbitrary machine learning applications.

26

3 A Sea of Boltzmann Machines:
The Simplest Case

The final goal of this thesis is to significantly reduce the external Poisson stimuli needed
for LIF neurons. In the end, we will see how it is possible to run networks of BMs reliably
even without any external noise input. However, to arrive at this goal, we first have to
take a look at a very simple setup and gradually introduce more complexity until we
obtain a network where the external noise can essentially be turned off. This approach
will help us understand the subtle differences between running a BM with completely
independent external noise sources and intrinsic background noise from a network of
BMs itself.
The simplest possible setup consists of one Boltzmann machine without Poisson

sources that receives its noise spike trains from an uncorrelated sea of BMs, i.e., in
this case a pool of independent BMs as illustrated in Fig. 3.1. To exclude possible
cross-correlations between the spike trains which would lead to correlated noise, only
one neuron of each BM contributes for now.

exc. Poisson source

inh. Poisson source

Figure 3.1: Schematic of the setup used throughout this chapter. Instead of using Poisson
sources, the neurons of the red BM are fed with spikes coming from a sea
of BMs (blue). For example, the three blue BMs on the left could provide
inhibitory noise input, and the right ones excitatory. The other two neurons
in the red BM are fed in the same way with noise, not shown in this image.
The blue BMs are still driven by Poisson sources (small colored boxes).

Note that the noise-generating neurons are still driven by Poisson sources. In the
following chapter, the main differences concerning the dynamics of a neuron driven by
Poisson or network noise will be discussed. Furthermore, it will be illustrated that LIF

27

3 A Sea of Boltzmann Machines: The Simplest Case

sampling is possible while replacing all Poisson sources with noise coming from other
BMs.

3.1 Autocorrelations in Noise Spike Trains

In ordinary LIF sampling, the neurons become stochastic due to high-frequency in-
hibitory and excitatory Poisson noise. By definition (Eq. 2.17b), the spike times orig-
inating from a Poisson source are completely uncorrelated. In contrast, the minimal
distance between two spikes coming from a LIF neuron is limited by the refractory
period (see Fig. 3.2). Furthermore, from intermediate to high activities, small bursts of
consecutive spikes may appear due to the free membrane potential being above threshold
for a time longer than the refractory period (as can be seen in Fig. 2.10).

P

τref

⎨

⎫

⎧

exc. Poisson source

inh. Poisson source

Figure 3.2: Schematic representation of the difference between BM-generated noise and
ideal Poisson sources. For Poisson sources, the individual spike times are all
completely independent. However, the spikes of a LIF neuron cannot have a
distance smaller than the refractory period τref . Furthermore, small bursts
of consecutive spikes with interspike distances of τref may happen, giving the
spike train a deterministic structure.

Since we are not only using a single neuron as a noise source but many, the restriction
of limited spike distances is not problematic as e.g. the spikes of a second neuron can
occur at all times, including during the refractory period of the first neuron. However,
small bursts introduce autocorrelations at times 6= 0 to the noise spike trains, making
the noise colored (correlated) instead of white (completely uncorrelated), which is a
notable difference from Poisson sources.

The normalized autocorrelation function ρa of a function, for instance a spike train
η(t) =

∑
spikes s δ(t− ts), is defined as:

ρa(∆) =
〈(η(t+ ∆)− 〈η〉)(η(t)− 〈η〉)〉

Var(η)
, (3.1)

28

3.1 Autocorrelations in Noise Spike Trains

where 〈·〉 denotes the expectation value and Var(·) the variance. Intuitively, the autocor-
relation function encodes how similar the spike train is to itself some time lag ∆ later.
Since spikes are only characterized by their spike time, we have to bin the spike train η(t)
in order to evaluate its autocorrelation function, i.e., discretize it into time intervals ∆t
and count the number of occurred spikes in each interval. Hence, the equation becomes

ρa,n =

∑
i(η

bin
i+n − 〈ηbin〉)(ηbin

i − 〈ηbin〉)
Var(ηbin)

(3.2)

with ηbin
i being the number of spikes during the time interval i∆t and (i + 1)∆t. Due

to the Wiener-Khintchine theorem (Wiener , 1930; Khintchine, 1934), an efficient way
of calculating an autocorrelation function is via the fast Fourier transform F :

ρa,n = F−1(F(ηbin)F∗(ηbin))|n . (3.3)

The complexity of the fast Fourier transform applied to an array with N entries is
O(N logN) (Cooley and Tukey , 1965), and using several Fourier transforms in series
simply adds a constant multiplicative factor to the complexity. But directly evaluating
the sum in Eq. 3.2 has a complexity of O(N2), becoming greatly inferior to the fast
Fourier transform for large arrays.

To investigate the influence of correlated noise on the dynamics of a single LIF neuron,
the parameters of the noise-generating BMs will be set constant and equal for the time
being. Consequently, each BM has the same weight matrix and bias vector. Also, since
we are only interested in the influence of bursting neurons on the noise quality, all
neurons in a BM will share the same bias. By increasing or decreasing the bias, the
activity of the neurons inside the BM can thus be easily adjusted. Of course, this rather
unrealistic restriction will be dropped in later simulations. The used parameters can
be found in App. 8.2. For all simulations in this thesis, the software packages NEST,
PyNN and SBS have been used, see App. 8.3 for more details.

3.1.1 Correlation Patterns in the Free Membrane Potential

First, we can take a look at the autocorrelation functions of the used noise (see Fig. 3.3).
In case of Poisson noise, the autocorrelation function is given by a delta peak at ∆ = 0.
But for noise coming from BMs, additional peaks at multiples of the refractory period
emerge. Depending on how active the neurons of the noise-generating BMs are, i.e., how
many bursts they emit and how long these are, the additional sidepeak structure will
be more or less pronounced.
For instance, if all neurons rarely spike and hence almost no bursts appear, the

autocorrelation function will return to a single delta peak at ∆ = 0. However, increasing
the activity creates sidepeaks at increasingly large time lags. Note that, since bursts
consist of multiple consecutive spikes with distance τref , the sidepeaks only appear at
multiples of τref . Also, the sidepeak structure decays on a certain time scale τc and goes

29

3 A Sea of Boltzmann Machines: The Simplest Case

to zero for large time lags, meaning that noise spikes become uncorrelated for large time
differences.

0 2 4 6 8 10

time lag ∆ [τref]

0.0

0.2

0.4

0.6

0.8

1.0

ρa (∆)

0 2 4 6 8 10

time lag ∆ [τref]

0.0

0.2

0.4

0.6

0.8

1.0

ρa (∆)

0 2 4 6 8 10

time lag ∆ [τref]

0.0

0.2

0.4

0.6

0.8

1.0

ρa (∆)

0 2 4 6 8 10

time lag ∆ [τref]

0.012

0.010

0.008

0.006

0.004

0.002

0.000

ρa (∆)

Figure 3.3: Autocorrelation function of spike trains generated by neurons with differ-
ent mean frequency ν̄. (top left) ν̄ = 0.14 τ−1

ref , (top right) ν̄ = 0.53 τ−1
ref

and (bottom left) ν̄ = 0.89 τ−1
ref . For higher mean frequencies, the neurons

are more likely to emit small bursts of consecutive spikes, with each spike
having a distance of τref to the following spike. This leads to an increase
in autocorrelation at multiples of the refractory period τref . Furthermore,
bursting also introduces an absence of spikes during the refractory period,
leading to negative parts in the autocorrelation function. This is shown for
ν̄ = 0.89 τ−1

ref in the bottom right plot.

Further note that between sidepeaks, the autocorrelation function becomes slightly
negative. This is again an effect of the refractory mechanism of the neurons that make
up the noise spike train. Each time a neuron spikes, it cannot spike again during its
refractory period. Therefore, the probability to observe a noise spike during this time
interval is reduced, leading to a negative autocorrelation. This will become important
later on when looking at the autocorrelation function of the free membrane potential of
a neuron driven by these noise spike trains.

The noise autocorrelations have a significant effect on the dynamics of the free mem-
brane potential. In the Poissonian case, the trace of the free membrane potential shows

30

3.1 Autocorrelations in Noise Spike Trains

no fixed patterns or structures since the noise spike times responsible for PSPs are all
random and independent. However, if we replace Poisson noise with noise coming from
BMs, patterns emerge dependent on the activity of the noise neurons (see Fig. 3.4). For
instance, in case of extremely bursting neurons, blocks of fixed patterns appear as the
membrane potential is repeatedly going through the same trajectory for some time. If
the activity of the noise neurons is reduced, these blocks start to disappear until we
reach the uncorrelated Poissonian limit again.

50.2

50.0

50.2
50.0
49.8

50.2

50.0

49.8

50.1

50.0

0.0 0.2 0.4 0.6 0.8 1.0
time [s]

50.1

50.0

Figure 3.4: Trace of the free membrane potential of a neuron driven by (top) Poisson
noise and (others) BM-generated noise from neurons with different mean
frequencies, from top to bottom: ν̄ = 0.14, 0.53, 0.98, 0.9997 τ−1

ref . For a
neuron driven by Poisson noise, the membrane is performing a random walk
around its mean resulting in a trace without repeated patterns. This is still
the case when low or medium activity neurons are providing noise. But
already for ν̄ = 0.53 τ−1

ref , small substructures can be seen in the membrane
trace. This effect becomes even stronger for higher activities until we obtain
large blocks with fixed patterns in the extremely high activity case. Note
that the dynamic range of the membrane potential is reduced for higher
activities.

The origin of the blocks is quite intuitive: Assuming the inhibitory noise is, for example,
generated by five neurons which are all bursting strongly, the noise spike train will show

31

3 A Sea of Boltzmann Machines: The Simplest Case

the same sequence of spike times until one of the neurons stops spiking for a short
period, resulting in a slight change of the sequence. After some time, all neurons will
have stopped bursting briefly and the pattern the free membrane potential is traversing
will be completely uncorrelated with the initial one.

An interesting question to ask now is whether we are still able to obtain a logistic
activation function with extremely correlated noise. In fact, as can be seen in Fig.
3.5, the free membrane distribution becomes Gaussian after sampling long enough.
Additionally, the activation function gradually becomes logistic as well. But due to
the fixed patterns in the free membrane trace, this process of convergence towards a
Gaussian takes much longer as compared to a neuron driven by Poisson noise. More
precisely, the time scale on which independent random fluctuations act on the membrane
potential is larger than for Poisson stimuli. This has an important consequence for
LIF sampling, as we may have to calibrate longer with BM-generated noise than with
Poisson noise to obtain the correct activation function. A demonstration of this effect
is shown in App. 8.8.1 and will not be discussed here.

Note that the neuron is not performing an Ornstein-Uhlenbeck (OU) process anymore
due to the noise being colored. In fact, the new process can be described with the same
Langevin equation as the OU process, with the exception that the noise term is now
itself generated by an OU process instead of a Poisson process.
In case of a linear Langevin equation

dx

dt
= γ(µ− x) + η(t) (3.4)

with Gaussian colored noise η(t) and position variable x, an analytical solution can
be found. For example, with a delta peak as the initial distribution, the stationary
distribution is given by a Gaussian with mean µ and finite variance (Hanggi and Jung ,
1995; Cáceres , 1999)

lim
t→∞

σ2(t) =
1

2γ

∫ ∞
0

〈η(0)η(τ)〉 e−γτ dτ , (3.5)

as will be demonstrated in the next section. The difference to the OU process can
be seen very nicely by looking at the autocorrelation function of the free membrane
potential (see Fig. 3.6). In case of an OU process, this is given by an exponential decay
with time constant τsyn and can be interpreted as the ’memory’ of the synapse. For
noise spike trains with autocorrelations on time scales τc � τsyn, we obtain a similar
result. Increasing the activity of the noise neurons, spike structures at multiples of τref

appear for τc ' τsyn. In the limit of very strongly bursting neurons, i.e., τc � τsyn, the
autocorrelation function of the free membrane potential decays on the time scale τc and
shows negative parts between multiples of the refractory time.

32

3.1 Autocorrelations in Noise Spike Trains

50.1 50.0
vm [mV]

0

10

20

30

p(vm)

50.15 50.10 50.05 50.00 49.95

vm [mV]

0.0

0.2

0.4

0.6

0.8

1.0
sigmoidal fit

measured activity

50.1 50.0
vm [mV]

0

5

10

15

20

p(vm)

50.15 50.10 50.05 50.00 49.95

vm [mV]

0.0

0.2

0.4

0.6

0.8

1.0
sigmoidal fit

measured activity

50.1 50.0
vm [mV]

0

5

10

15

20

p(vm)

50.15 50.10 50.05 50.00 49.95

vm [mV]

0.0

0.2

0.4

0.6

0.8

1.0
sigmoidal fit

measured activity

Figure 3.5: Free membrane potential distribution of a neuron driven by strongly auto-
correlated noise (ν̄ = 0.9997 τ−1

ref) and the corresponding activation function
after running the simulation for (top) 1 · 104ms, (middle) 5 · 104ms and
(bottom) 5 · 105ms for each data point. On the left, we see that for short
simulation durations the free membrane distribution does not resemble a
Gaussian. However, increasing the run time leads to better results. A Gaus-
sian fit to each distribution is included in red. On the right side, the measured
activation functions are presented in blue, with the corresponding logistic fit
in red. Again, for short simulation times, the activation function does not
resemble a logistic function and has additional systematic deviations coming
from the autocorrelations. Measuring over longer times recovers the desired
symmetric shape.

33

3 A Sea of Boltzmann Machines: The Simplest Case

0 10 20 30 40 50 60

time [ms]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

ρa

measured

convolution

OU process

0 10 20 30 40 50 60 70 80

time [ms]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρa

measured

convolution

OU process

0 20 40 60 80 100

time [ms]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρa

measured

convolution

conv. without neg. parts

0 50 100 150 200

time [ms]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρa

measured

convolution

conv. without neg. parts

Figure 3.6: Autocorrelation function of the free membrane potential for a neuron with
τsyn = 10ms driven by BM-generated noise with different activities. The noise
is generated by neurons with a mean frequency of (top left) ν̄ = 0.014 τ−1

ref ,
(top right) ν̄ = 0.14 τ−1

ref , (bottom left) ν̄ = 0.53 τ−1
ref and (bottom right)

ν̄ = 0.89 τ−1
ref . In blue, the measured autocorrelation is given. The red

dashed lines show the result of the normalized convolution of the noise
autocorrelation function and the exponential decay kernel exp (− |t|

τsyn
) (see

Eq. 3.6). In green, the autocorrelation function exp (− t
τsyn

) of the OU process
is shown. For low activities, we return to a similar result as for the OU process.
Finite autocorrelations in the noise, however, lead to a structure with spikes.
This effect is even more pronounced in the two bottom plots. The sharp
spikes originate from an accelerated decay due to the negative parts of the
noise autocorrelation function combined with the positive delta peaks that
lead to a sudden rise in correlation. The black curves in the bottom plots
are calculated the same way as the red dashed lines, but with all negative
parts of the noise autocorrelation function set to 0. This leads to an absence
of the strongly decaying part between multiples of the refractory period.

34

3.1 Autocorrelations in Noise Spike Trains

This also demonstrates that we could return to the OU case by increasing the
synaptic time constant τsyn, such that correlations in the spike train occur on time
scales that are smaller than the inherent autocorrelation of the OU process coming
from the synaptic interaction. As before, this would slow down the time evolution of
the membrane potential, changing the time scale on which independent dynamics can
happen.

It was further observed that the autocorrelation function of the normalized free mem-
brane potential ū(t) = u(t) − 〈u〉 can be obtained by convolving the spike train auto-
correlation function with the synaptic exponential decay exp(− |t|

τsyn
):

lim
t→∞
〈ū(t)ū(t+ ∆)〉 ∝

∫ ∞
−∞
〈η(0)η(τ)〉 exp

(
− |∆− τ |

τsyn

)
dτ . (3.6)

Eq. 3.6 can be motivated as follows: An incoming spike leads to a rapid change of the
membrane potential which then starts to decay exponentially. This way, self-similarity
is introduced to the trace of the membrane potential resulting in an exponentially
shaped autocorrelation function. However, bursting adds even more structure, further
propagating these exponential autocorrelations to larger time lags. Convolution takes
this propagation of correlations into account. For a proof of Eq. 3.6, see App. 8.7.
Since the spike train autocorrelations have negative values between multiples of the

refractory period (see Fig. 3.3), we obtain small minima in the free membrane potential
autocorrelations that might even become negative, as demonstrated in Fig. 3.6. This
is a clear difference to the correlations induced by the OU process on the membrane
dynamics.

3.1.2 Effect on the Free Membrane Potential Distribution

Another major difference between a neuron driven by Poisson noise and BM-generated
noise is the width of the free membrane potential distribution. In case of BM-generated
noise, the width is narrower as with equivalent Poisson sources, i.e., Poisson noise with
the same frequency and weights. The effect becomes more pronounced if we increase
the activity of the noise neurons.

The width of the stationary free membrane potential distribution is given by Eq. 3.5
and can be derived analytically for COBA LIF neurons in the high-conductance state.
The ansatz presented here is inspired from Schwarz (2012).

For simplicity, we assume that both inhibitory and excitatory noise sources have
approximately the same frequency, weight and autocorrelation function. The ODE
of COBA LIF neurons in the high-conductance state can be solved perturbatively
(Petrovici , 2016):

35

3 A Sea of Boltzmann Machines: The Simplest Case

u(t) = u0 +
∑
k∈{e,i}

∑
spikes s

ΛkΘ(t−ts)
[

exp

(
− t− ts

τ syn
k

)
− exp

(
− t− ts
〈τeff〉

)]
, (3.7a)

Λk =
τ syn
k ωk

(
Erev
k − 〈ueff〉

)
〈gtot〉

(
τ syn
k − 〈τeff〉

) , (3.7b)

with an offset u0. Choosing the reversal potentials symmetrically around 〈ueff〉, u0 can
be identified as 〈u〉. Moreover, since we are in the high-conductance state, which is
characterized by a very fast membrane 〈τeff〉 → 0, we get

ū(t) ∝
∑

spikes s

ΛeΘ(t− ts) exp

(
− t− ts

τ syn
e

)
+
∑

spikes s

ΛiΘ(t− ts) exp

(
− t− ts

τ syn
i

)
(3.8)

with ū(t) = u(t)−〈u〉. Then, using Sx(t′) =
∑

spikes s δ(t
′−ts) with x ∈ {e, i} to represent

the noise spike trains and neglecting the constant prefactor Λ = Λe = −Λi, we get:

ū(t) ∝
∫ t

0

dt′Se(t
′) exp

(
− t− t′

τ syn
e

)
−
∫ t

0

dt′Si(t
′) exp

(
− t− t′

τ syn
i

)
. (3.9)

Note that the Θ functions were absorbed into the integration boundaries. With this, we
can now calculate 〈ū(t)2〉. Since Se and Si are assumed to have the same autocorrelation
function 〈S(t′)S(t′′)〉 as well as τsyn = τ syn

e = τ syn
i , we obtain:

〈ū(t)2〉 ∝
∫ t

0

dt′
∫ t

0

dt′′ 〈S(t′)S(t′′)〉 e−
t−t′
τsyn e

− t−t
′′

τsyn . (3.10)

In our case, the autocorrelation function of the noise spike trains is symmetric and
depends only on the time difference 〈S(t′)S(t′′)〉 = f(|t′− t′′|). This can be used to split
the integral into two terms for t′ > t′′ and t′′ < t′:

〈ū(t)2〉 ∝
∫ t

0

dt′
∫ t′

0

dt′′f(t′ − t′′) ...+
∫ t′′

0

dt′
∫ t

0

dt′′f(t′′ − t′) ...

= 2

∫ t

0

dt′
∫ t′

0

dt′′f(t′ − t′′)e−
t−t′
τsyn e

− t−t
′′

τsyn . (3.11)

Here, the second term was brought into the same form as the first one by relabeling
t′ → t′′ and t′′ → t′. One of the integrals can be evaluated with a change of variables
τ = t′ − t′′ and κ = t′′:

36

3.1 Autocorrelations in Noise Spike Trains

50.2 50.0 49.8

vm [mV]

0

2

4

6

8

p(vm)

theory

Poisson

BM noise

50.2 50.0 49.8

vm [mV]

0

5

10

p(vm)

theory

Poisson

BM noise

50.2 50.0 49.8

vm [mV]

0

5

10

15

p(vm)

theory

Poisson

BM noise

50.2 50.0 49.8

vm [mV]

0

5

10

15

20

p(vm)

theory

Poisson

BM noise

Figure 3.7: Free membrane potential distribution for (orange) a neuron driven by BM-
generated noise from neurons with different mean frequencies and (blue) the
same neuron driven by equivalent Poisson sources, i.e., same frequencies and
weights as the BM-generated noise input. In red, the theoretical distribution
is plotted, where the width of the distribution with Poisson sources was
simply rescaled by the factor given in Eq. 3.13. The mean frequencies of the
noise neurons are (top left) ν̄ = 0.14 τ−1

ref , (top right) ν̄ = 0.53 τ−1
ref , (bottom

left) ν̄ = 0.89 τ−1
ref and (bottom right) ν̄ = 0.9997 τ−1

ref . With increased activity
the width of the free membrane potential distribution becomes narrower.

〈ū(t)2〉 ∝ e
− 2t
τsyn

∫ t

0

dτ

∫ t−τ

0

dκf(τ) exp

(
2κ+ τ

τsyn

)
=
τsyn

2

∫ t

0

dτf(τ)

[
exp

(
− τ

τsyn

)
− exp

(
τ − 2t

τsyn

)]
. (3.12)

For the stationary solution, we have to set t→∞. Thus, the final result is:

lim
t→∞
〈ū(t)2〉 ∝

∫ ∞
−∞

dτf(τ) exp

(
− |τ |
τsyn

)
= Γ . (3.13)

For Poisson noise, f(τ) is a delta peak at 0 and therefore Γ is 1. However, for autocor-
related noise, we obtain results different from 1, translating to a rescaling of the width

37

3 A Sea of Boltzmann Machines: The Simplest Case

of the membrane distribution. Hence, we can obtain the width of the free membrane
distribution for autocorrelated noise by rescaling the width generated by equivalent but
uncorrelated Poisson sources (see Fig. 3.7).
A more intuitive explanation for the reduced width can be found by looking at the

k-th neighbour distance distribution of the noise spike trains. It measures how probable
it is to find exactly k spikes in a time interval ∆t. For instance, for k = 1 it represents
the interspike interval distribution, i.e., the distribution of interspike distances.
Due to autocorrelations, there is a distinct preference for spikes having a distance

that is a multiple of τref to their k-th neighbour. In the low-activity regime, where the
autocorrelations are weak and bursting rarely appears, the distribution is similar to the
one of a Poisson source, with the exception of small peaks at multiples of the refractory
period. For higher activities, the distribution becomes distorted when reaching a multiple
of the refractory period because spikes that belong to the same bursting neuron coincide.

Furthermore, notice that in the right plot in Fig. 3.8, the distribution quickly vanishes
for k < 5 and ∆t > τref . In this case, the noise spike train was generated by five network
BMs. Therefore, exactly five bursting network neurons are contributing to the noise
spike train. Since the spikes of every network neuron have a distance of approximately
τref , after one network neuron spikes the first four neighbouring spikes have to come
from the other network neurons. Hence, their distance cannot be much larger than τref .
Similarly, for k = 6 all spikes have distances larger than τref . This introduces an absence
of close-distance spike bursts in the noise. These small bursts lead to the large and
rapid increase or decrease of the membrane potential observed in the Poisson case and is
absent for BM-generated noise in the high activity regime, resulting in the smaller width
of the free membrane potential distribution. This effect also occurs if one increases the
number of BMs that contribute to one noise source (see App. 8.8.2).
Again, another illustration is that, in case of strongly bursting neurons, the instan-

taneous frequency of the spike train varies less than for sparsely firing neurons. For
example, if the noise neurons are very active, they are very close to their maximum
frequency of τ−1

ref which also strictly limits the maximum frequency of the noise spike
train (see Fig. 3.9). Larger variations in frequency, however, allow periods of strong ex-
citation or strong inhibition leading to a larger membrane potential distribution width
as observed for Poisson sources.

38

3.1 Autocorrelations in Noise Spike Trains

k=2
network
poisson

k=3

k=4

0 0.5 1 1.5 2

kth-spike distance [τref]

k=6

k=2
network
poisson

k=3

k=4

0 0.5 1 1.5 2

kth-spike distance [τref]

k=6

Figure 3.8: k-th neighbour interval distribution for (red) BM-generated noise from neu-
rons with mean frequencies (left) ν̄ = 0.14 τ−1

ref , (right) ν̄ = 0.89 τ−1
ref and

(blue) noise from an equivalent Poisson source. For k = 1 we simply obtain
the interspike interval distribution. Note that for a Poisson process the in-
terspike distances are exponentially distributed. Hence, for k = 2, we sum
up two exponentially distributed intervals, for k = 3 three intervals and
so on. However, summing up exponentially distributed random variables
leads to a Gamma-distributed random variable. Therefore, the Poissonian
k-th neighbour distance distributions are Gamma distributions. Due to the
refractory period, BM-generated noise prefers a distance of multiples of the
refractory period. This leads to an absence of short noise bursts, i.e., many
spikes in a very small time interval, reducing the dynamic range of the free
membrane potential.

300 400 500 600 700 800
momentary frequency [Hz]

0.000

0.005

0.010

0.015

0.020

distr.

network noise

Poisson noise

Figure 3.9: Distribution of the momentary noise frequency estimated by binning the
noise spike train into intervals of 100ms. If the noise is generated by
neurons with a mean frequency close to their maximum frequency (here:
ν̄ = 0.89 τ−1

ref), the distribution becomes skewed.

39

3 A Sea of Boltzmann Machines: The Simplest Case

3.2 LIF Sampling with Boltzmann Machine Noise

As was shown in the previous section, there are several differences between ideal Poisson
sources and noise generated by neurons of network BMs. Nevertheless, we have also seen
that the resulting activation functions can still be well-fitted by logistic functions, only
with very different fit parameters. Therefore, before sampling, the neurons of the sampling
BM have to be calibrated to their individual noise sources (with a long calibration time
of 5 · 105ms in order to capture the full statistics of the process, see Fig. 3.5). Then, the
parameters of the calibration can be used to translate the theoretical weights and biases
for each neuron individually. The target Boltzmann parameters are drawn from beta
distributions as follows:

W ∝ W0 ·
(
beta(0.5, 0.5)− 0.5

)
, (3.14a)

b ∝ 1.2 ·
(
beta(0.5, 0.5)− 0.5

)
, (3.14b)

with a weight scaling factor W0 that determines the maximal allowed weights. The beta
distribution has been chosen because it can be parametrized to provide large but still
limited weights (in contrast to, e.g., a Gaussian) leading to more irregular Boltzmann
distributions. Therefore, we can avoid extreme weights and at the same time easily
change the overall structure of the distribution by adjusting W0. Illustrations of the
beta distribution can be found in App. 8.5.
The extremely regular spiking of noise neurons discussed in the last section, which

was mostly responsible for systematic deviations from the Poisson-stimulated case, is
actually rather untypical. In fact, since each noise-generating BM is also sampling from a
target distribution, their weights and biases will be drawn from beta distributions as well.
This mimics the fact that in the end, all BMs will be performing some specific sampling
task and are in no way optimized to provide noise. The autocorrelation functions of
noise spike trains generated by randomly initialized BMs can be found in App. 8.8.4.

The simulation setup is the following: A 6-neuron BM is fed with noise coming from
a network of 3-neuron BMs. The weights and biases of the noise-generating BMs are all
drawn individually from beta distributions. In each simulation, the generated noise was
used to sample from 24 target distributions with parameters drawn from a specific beta
distribution. Furthermore, each simulation was repeated 10 times with different random
seeds in order to take into account different realizations of the noise. For comparison,
identical simulations were done using Poisson noise.

As can be seen in Fig. 3.10, if we do not use the BM noise sources for calibration, but
equivalent Poisson noise instead, the sampling quality is worse than the ideal one. This
is a systematic error, as the activation function used to translate weights and biases is
not the one actually observed while sampling with BM-generated noise.
If the calibrations are done correctly, sampling with noise generated from random

BMs comes very close to the quality of LIF sampling with Poisson sources, as shown in
Fig. 3.11 and 3.12. Even more so, for large weights it becomes slightly better. However,

40

3.2 LIF Sampling with Boltzmann Machine Noise

101 102 103 104 105 106

simulation time [ms]

10-2

10-1

100

101

DKL

BM noise with Poisson cal.

Poisson noise

Figure 3.10: Mean DKL over time for a BM sampling from different Boltzmann distri-
butions with W0 = 2.4. The noise-generating BMs used W noise

0 = 1.2. If
the neurons of the sampling BM are calibrated with equivalent Poisson
noise, the final DKL is around one order of magnitude higher than the DKL

obtained with Poisson sources. The shaded area marks the interval between
the 15th and 85th percentile (see App. 8.2).

101 102 103 104 105 106

simulation time [ms]

10-3

10-2

10-1

100

101

DKL

W0 =0.6

W0 =1.2

W0 =2.4

W0 =3.0

W0 =8.0

Figure 3.11: Mean DKL over time for a network sampling from different Boltzmann dis-
tributions with different weight scalingW0. The noise-generating BMs have
W noise

0 = 1.2. The respective case with Poisson noise is included as dashed
lines. The shaded areas are bounded by the 15th and 85th percentile. If the
neurons of the sampling BM are calibrated with BM-generated noise, the
LIF sampling quality is comparable to the Poisson case. For larger weights
W0, the DBM

KL is even better than the DPoisson
KL . However, this difference is

only very small and does not increase for extremely large weights.

41

3 A Sea of Boltzmann Machines: The Simplest Case

101 102 103 104 105 106

simulation time [ms]

10-3

10-2

10-1

100

101

DKL

W0 =0.6

W0 =1.2

W0 =2.4

W0 =3.0

101 102 103 104 105 106

simulation time [ms]

10-3

10-2

10-1

100

101

DKL

W0 =0.6

W0 =1.2

W0 =2.4

W0 =3.0

Figure 3.12: Same setup as in Fig. 3.11, but with (left)W noise
0 = 0.6 and (right)W noise

0 =
2.4. The obtained DKL curves are all very similar (note the logarithmic
ordinate), which is not surprising since scaling up the weights of the noise-
generating BMs has a negligible effect on the autocorrelation function of
the noise spike trains.

as for Poisson noise, the quality gets rapidly worse when increasing the weight scaling
factor (due to PSPs not being rectangular). Because the difference in DKL between
the case with BM-generated noise and Poisson noise is relatively small and since the
final setup will be completely different from the idealized setup studied here, this has
not been followed up any further. Interestingly, changing the weight scale factor for the
noise-generating BMs does not alter the sampling quality, as shown in Fig. 3.12. This
result is expected since changing the absolute value of the weights has only a small effect
on the autocorrelations of the noise spike trains (see App. 8.8.4).

It is important to note that a DKL of 10−1 does not mean that the network performs
bad at sampling on an absolute scale. To provide an illustration of the involved DKL

values, bar plots of exemplary distributions used in Fig. 3.11 are presented in Fig. 3.13.
It can be seen that even for rather extreme weight distributions, the LIF networks
fed with input from noise-generating BMs still capture the main modes of the target
distribution very well.

To summarize, there are several differences between Poisson noise and noise gener-
ated from Boltzmann machines. First of all, the BM-generated noise spike trains are
autocorrelated due to the refractory mechanism of LIF neurons. This leads to a reduced
width of the free membrane potential. Furthermore, the membrane autocorrelation is
different from the one obtained by a pure OU process because we are using colored
(autocorrelated) noise instead of white (uncorrelated) noise.

This also means that the activation function obtained from BM-generated noise and
equivalent Poisson noise are different. However, when calibrating each neuron with spike
trains from the actually used noise sources, LIF sampling with noise coming from BMs
can be successfully implemented without losing sampling quality. Moreover, the sampling

42

3.2 LIF Sampling with Boltzmann Machine Noise

states
10-3

10-2

10-1

Prob.

sampled distr.

theo. distr.

states
10-4

10-3

10-2

10-1

Prob.

sampled distr.

theo. distr.

states
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Prob.

sampled distr.

theo. distr.

Figure 3.13: Illustration of exemplary distributions that were sampled from. The weights
of the noise-generating BMs were scaled with W noise

0 = 1.2. The sampled
distributions shown here were randomly generated with (top) W0 = 0.6,
(middle) W0 = 2.4 and (bottom) W0 = 8.0. Each pair of bars represents the
probability of a network state, once given by the sampled distribution and
once by the theoretical target distribution. Note that the probabilities here
are shown on a log-scale. For higher weight scale factors, the theoretical
target distribution becomes more irregular and the differences between
sampled and target distribution increase. However, the network continues
to sample consistently from the highest-mass probability modes.

quality of ideal LIF sampling with Poisson sources is achieved over a very large range of
biases of the noise neurons (for instance, even in the ν̄ = 0.89 τ−1

ref case of the previous
sections), as demonstrated in App. 8.8.3.

43

4 Using Correlated Spike Trains
from the Sea of Boltzmann
Machines

In the previous chapter, a BM was driven by noise coming from a pool of independent
BMs instead of ideal Poisson sources. However, to avoid unnecessary cross-correlations,
only one neuron out of each of these BMs contributed to the noise spike trains.
This restriction will now be softened by allowing two neurons from each BM to

contribute. Such neuron pairs are connected via a synaptic weight, correlating their
spike times and introducing additional correlations into the noise spike trains. The two
setups investigated in the following sections are shown in Fig. 4.1.

exc. Poisson source inh. Poisson source

Figure 4.1: Schematic of the setups investigated in this chapter. Instead of using just one
neuron from every sea BM as in the previous chapter, a second one is now
added. The spike trains can either be connected to two different neurons of
the red BM or to a single neuron (dotted line). In both cases, since the blue
neurons are connected via weights, correlations are introduced between the
noise spike trains. For example, the spike trains depicted here are positively
correlated, i.e., the two blue neurons prefer spiking synchronously. Again,
none of the red neurons are receiving Poisson input.

If neurons of a BM are driven by cross-correlated noise (as would, in general, be the
case for noise neurons that are themselves interconnected), the probability distribution
the BM is sampling from becomes distorted. The reason for this is that the additional
correlations change the degree of synchronous and asynchronous spiking of neurons in
the BM, which is normally defined by the synaptic weights alone (which correspond to
Boltzmann weights).

45

4 Using Correlated Spike Trains from the Sea of Boltzmann Machines

Throughout the next sections, it will be demonstrated how the effect of noise correla-
tions can be reduced. This will enable us to use all neurons in the pool of noise-generating
BMs and is a necessary step before introducing interconnections between sea BMs in
the next chapter.

4.1 Merging Correlated Spike Trains

First, we will look at a slightly modified version of the uncorrelated case discussed in the
previous chapter. Instead of just taking the spike train of one neuron per noise-generating
BM, we now take two and merge them. This way, the cross-correlation function of both
spike trains will also contribute to the final autocorrelation of the merged spike train.
Of course, there is also the possibility of connecting the two correlated spike trains

to the same neuron but with different synapse types. However, this will only have a
negligible effect on the noise quality. For instance, if the two spike trains are positively
correlated, the sampling neuron will have a higher chance of receiving an excitatory and
an inhibitory spike at approximately the same time. Thus, the net effect of the noise
on the membrane potential will just cancel, which is equivalent to a reduction of the
effective noise frequency. In Chap. 4.2.1, it will be shown that such correlations can
be compensated by additionally connecting negatively correlated spike trains, which
counter the effects of the positively correlated ones. The setups are illustrated in Fig. 4.2.

E/I
E/I

exc. Poisson source

inh. Poisson source

E/I
I/E

Figure 4.2: Instead of using just one neuron from every sea BM (blue), each neuron of
the sampling BM (red) gets two spike trains from every BM. These can either
be merged, i.e., both spike trains are either connected to the excitatory (E)
or inhibitory (I) synapse (left), or they are connected to different synapses,
i.e., one excitatory and the other one inhibitory (right). Every red neuron
gets spike trains from many noise-generating BMs.

46

4.1 Merging Correlated Spike Trains

The autocorrelation function of a spike train that was merged together from two
separate spike trains can be calculated analytically. Firstly, let us call the binned version
of the spike trains s1(t) and s2(t). Merging spike trains is then equivalent to adding up
the binned versions n(t) = s1(t) + s2(t). This also means that the mean rates simply
add up, i.e., 〈n〉 = 〈s1〉 + 〈s2〉. In the following, we drop the explicit time dependence
of the spike trains for clarity. The autocorrelation function of the resulting spike train
n is given by:

corr(n, n)k · Z =
∑
i

(
ni − 〈n〉

)(
ni+k − 〈n〉

)
, (4.1)

with a normalization constant Z = Var(n) that will be determined later. Using n = s1+s2,
this can be rewritten:

∑
i

(
ni − 〈n〉

)(
ni+k − 〈n〉

)
=
∑
i

(
s1
i + s2

i − 〈s1〉 − 〈s2〉
)(
s1
i+k + s2

i+k − 〈s1〉 − 〈s2〉
)

(4.2a)

=
∑
i

(
s1
i − 〈s1〉

)(
s1
i+k − 〈s1〉

)
+
∑
i

(
s2
i − 〈s2〉

)(
s2
i+k − 〈s2〉

)
(4.2b)

+
∑
i

(
s1
i − 〈s1〉

)(
s2
i+k − 〈s2〉

)
+
∑
i

(
s2
i − 〈s2〉

)(
s1
i+k − 〈s1〉

)
= corr(s1, s1)k Var(s1) + corr(s2, s2)k Var(s2) (4.2c)

+
(
corr(s1, s2)k + corr(s2, s1)k

)√
Var(s1)Var(s2) ,

where we used the definition of the cross-correlation function, a generalization of the
autocorrelation function defined in Eq. 3.1:

corr(s1, s2)k =

∑
i

(
s1
i − 〈s1〉

)(
s2
i+k − 〈s2〉

)√
Var(s1)Var(s2)

. (4.3)

The normalization Z can be found by using the condition corr(n, n)0
!

= 1, which has to
be fulfilled by every autocorrelation function:

Z = Var(s1) + Var(s2) +
(
corr(s1, s2)0 + corr(s2, s1)0

)√
Var(s1)Var(s2)

= Var(s1) + Var(s2) + 2 cov(s1, s2)
√

Var(s1)Var(s2) , (4.4)

where the covariance cov(s1, s2) = corr(s1, s2)0 = corr(s2, s1)0 was introduced. Thus,
the autocorrelation function of n can be rewritten in terms of the autocorrelation and
cross-correlation functions of s1 and s2:

47

4 Using Correlated Spike Trains from the Sea of Boltzmann Machines

corr(n, n)k = Z−1

(
corr(s1, s1)k Var(s1) + corr(s2, s2)k Var(s2) (4.5)

+
(
corr(s1, s2)k + corr(s2, s1)k

)√
Var(s1)Var(s2)

)
and in the special case of Var(s1) = Var(s2):

corr(n, n)k =
corr(s1, s1)k + corr(s2, s2)k + corr(s1, s2)k + corr(s2, s1)k

2 + 2 cov(s1, s2)
. (4.6)

Now, if s1 and s2 are not correlated, the correlation and covariance terms are zero
and the resulting autocorrelation of the merged spike train n is simply the weighted
mean of both. However, existing correlations either lead to an increase or decrease of
autocorrelation as demonstrated in Fig. 4.3.
Also note that the correlation terms for non-zero delay (numerator) as well as the

(co)variance terms for zero delay (denominator) are averaged with the corresponding
autocorrelations. Hence, if the spike trains are already strongly autocorrelated, positive
cross-correlations will only slightly affect the final autocorrelation.
Since the binning of spike trains leads to strong artifacts in the calculated correla-

tion functions, the binned spike trains were first smoothed with a Gaussian kernel. For
example, choosing the bin width too small leads to an underestimation of negative corre-
lations. But for larger bin widths, strong oscillations to negative values occur in strictly
positive correlation functions. Gaussian smoothing not only removes these artifacts,
it also allows us to use a consistent and comparable method to calculate correlations.
This approach is a common one and was, for example, also used in Breitwieser (2011);
Petrovici et al. (2014); Stöckel (2015). Thus, the spike trains were first binned with a
bin width ∆ = 1ms and further convolved with a Gaussian exp

(
− t2

2σ2

)
with width

σ = 5ms before calculating the correlation function. An example of the binned spike
train and its smoothed version can be found in Fig. 4.4.
Because adding up correlated spike trains does not increase the already present

autocorrelation by a significant amount, the quality of LIF sampling should not be
negatively affected. To test this, several setups were used. First, the case where both
spike trains are connected to the same synapse was investigated (Fig. 4.2, left) for three
different cases:

1. The weights between the noise-providing neurons are drawn from a symmetric
beta distribution, W noise ∝ 6 ·

(
beta(0.5, 0.5)− 0.5

)
.

2. The weights between the noise-providing neurons are drawn from an asymmetric
beta distribution to provide mainly positive weights, W noise ∝ 6 ·

(
beta(5, 0.5)−

0.5
)
.

48

4.1 Merging Correlated Spike Trains

0 1 2 3 4 5
∆t [τref]

0.

0.5

1.0 crosscorr. neuron 0 → 1

crosscorr. neuron 1 → 0

autocorr. merged

autocorr. neuron 0

autocorr. neuron 1

theory

0 1 2 3 4 5
∆t [τref]

-0.5

0.

0.5

1.0
crosscorr. neuron 0 → 1

crosscorr. neuron 1 → 0

autocorr. merged

autocorr. neuron 0

autocorr. neuron 1

theory

Figure 4.3: Spike train correlation functions of two neurons and their merged spike
train, compared with the theoretical result. The spike trains have first been
binned and afterwards smoothed with a Gaussian kernel. Both neurons are
connected with a weight drawn from an asymmetric beta distribution with
strong positive (top) and negative (bottom) weights. This leads either to
strong positive (top) or negative (bottom) cross-correlations, shown in orange
and dark red. Furthermore, both neurons have finite autocorrelations due
to the refractory mechanism (gray triangles). Using Eq. 4.5, the theoretical
autocorrelation obtained from merging both spike trains is given by the
red stars and agrees very well with the experimentally obtained one (blue).
(top) Note that, even though we have strong auto - and cross-correlations,
the merged spike train has almost the same autocorrelation function as
the initial individual spike trains. (bottom) A negative cross-correlation
reduces autocorrelation after merging the individual spike trains.

49

4 Using Correlated Spike Trains from the Sea of Boltzmann Machines

0 200 400 600 800 1000
time [ms]

0.0

0.5

1.0

1.5
binned spike train

smoothed version

Figure 4.4: In red, the binned version of a spike train is shown, which is discontinuous
whenever a spike occurs. Convolving the binned spike train with a Gaussian
kernel smooths out the abrupt changes and makes it easier to calculate high-
resolution correlation functions between spike trains without any disturbing
artifacts (e.g. oscillations).

3. The weights between the noise-providing neurons are drawn from an asymmetric
beta distribution to provide mainly negative weights, W noise ∝ 6 ·

(
beta(0.5, 5)−

0.5
)
.

In all cases, the biases were drawn from a beta distribution bnoise ∝ 1.2 ·(
beta(0.5, 0.5) − 0.5

)
. The number of used sea BMs was automatically adjusted to

guarantee a minimum noise frequency of around 800Hz. Case 2. and 3. are limiting cases
where the noise neurons are either strongly positively or negatively correlated. This
either leads to an increase or decrease in the autocorrelation function of the resulting
noise spike trains. Case 1. mixes spike trains coming from positively and negatively
correlated neurons and is therefore not a corner case.
Secondly, a general setup was investigated where the spike train of each neuron is

connected randomly inhibitorily or excitatorily with equal probability (i.e., a mix of the
two cases presented in Fig. 4.2). The results of sampling from 24 Boltzmann distributions
drawn from

W ∝ 2.4 ·
(
beta(0.5, 0.5)− 0.5

)
, (4.7a)

b ∝ 1.2 ·
(
beta(0.5, 0.5)− 0.5

)
, (4.7b)

and repeating the whole experiment 20 times with different random seeds is shown in
Fig. 4.5. Note that each neuron is again calibrated to its respective noise source, i.e.,
the noise-generating BMs. As expected, the LIF sampling quality is in all cases close
to the ideal case with Poisson sources. Hence, feeding a single neuron with correlated
spike trains does not negatively affect LIF sampling.

50

4.1 Merging Correlated Spike Trains

101 102 103 104 105 106

simulation time [ms]

10-3

10-2

10-1

100

DKL

symmetric weights

general setup

Poisson noise

101 102 103 104 105 106

simulation time [ms]

10-3

10-2

10-1

100

DKL

positive weights

negative weights

Poisson noise

Figure 4.5: Mean DKL after sampling from 24 different Boltzmann distributions with
single neurons being fed by correlated spike trains. The experiment was
repeated 20 times. The shaded areas mark the interval between the 15th
and 85th percentile over all DKL curves. In all cases, the sampling quality
is in the same range as the ideal Poissonian one. (top) Here, two cases are
presented: (blue) The weights of the noise-generating BMs are drawn from
a symmetric beta distribution and spike trains of correlated neuron pairs
are connected to the same synapse. This is the previously mentioned case 1.
(green) The general setup mentioned earlier. Again, weights are drawn from
a symmetric distribution, but each spike train is connected with a random
synapse type. (bottom) Similar to case 1, but once with strong positive
and once with strong negative weights (cases 2. and 3. discussed previously).

51

4 Using Correlated Spike Trains from the Sea of Boltzmann Machines

4.2 Distributing Correlated Spike Trains

Instead of connecting noise spike trains coming from the same BM to a single neuron, we
can connect them to neighbouring neurons. This will introduce additional correlations
between neurons of the sampling BM.
The setup is as follows: A sampling BM with three neurons receives its noise from a

pool of Poisson-driven BMs. Two neurons of the sampling BM get strongly correlated
noise, i.e., each noise-generating BM provides its two strongest correlated spike trains as
noise. The third neuron gets its noise from independent BMs as in Chapter 3. Whether
a spike train is connected inhibitorily or excitatorily is chosen randomly with equal
probability.

exc. Poisson source

inh. Poisson source

Figure 4.6: The setup investigated in this section. Two of the sampling BM neurons
get their noise from a common pool of network BMs and the third one gets
independent noise as in Chapter 3. This introduces correlations between the
noise spike trains of the top two red neurons.

There are two ways to reduce correlations between noise spike trains. Since several
neurons from different noise-generating BMs contribute to each noise spike train, we can
simply merge positively and negatively correlated pairs such that the resulting correlation
will average out to zero. In this scenario, the noise input itself will be uncorrelated because
positive and negative contributions, coming from neurons connected via positive and
negative synaptic weights, cancel each other out.
Furthermore, whether the spike trains coming from two correlated neurons are both

connected to the same or different synapse types changes the resulting correlation of
the receiving neurons. For example, if the two neurons produce positively correlated
spike trains, connecting these with a symmetric pattern, i.e., both excitatory or both
inhibitory, leads to positive correlations between the two noise-driven neurons since
common input facilitates synchronous spiking. However, using an asymmetric pattern,
i.e., one excitatory/inhibitory and the other one inhibitory/excitatory, the former positive
correlation is translated to a negative one since one neuron gets excitatory input when
the other one gets inhibitory input, leading to a preference for non-synchronous spiking.

52

4.2 Distributing Correlated Spike Trains

Now, even if the input noise spike trains are strongly correlated, the membrane dynamics
of the sampling BM neurons can be decorrelated by randomly choosing the synapse
types.
In the following sections, these cases will be discussed in more detail.

4.2.1 Mixing Input Correlations

The first way to use correlated spike trains to obtain uncorrelated input noise is by
choosing the weights of the noise-generating BMs randomly. The procedure works in
the following way: We have several 3-neuron BMs that are still driven by Poisson noise.
In each of these, we have one strong synaptic weight and two weak synaptic weights
that are randomly drawn from a beta distribution

W noise
strong ∝ 4.0 ·

(
beta(0.5, 0.5)− 0.5

)
, (4.8a)

W noise
weak ∝ 1.0 ·

(
beta(5.0, 5.0)− 0.5

)
. (4.8b)

The strong weights are chosen to guarantee strong correlations such that we can
study the decorrelation mechanism presented here under extreme conditions. From each
noise-generating BM, the spike trains of the two neurons connected by the strong weight
are fed into the neurons with the largest absolute weight of the sampling BM. This is
repeated for all noise-generating BMs (see Fig. 4.7). The third neuron of the sampling
BM receives its noise from independent noise-generating BMs as in Chapter 3.

In fact, the resulting correlation function between two spike trains (n1, n2) that were
merged together from two sets of correlated spike trains (s1, s2) and (t1, t2) can be
easily derived. First, the correlation function with normalization constant Z is given by:

corr(n1, n2)k · Z =
∑
i

(
n1
i − 〈n1〉

)(
n2
i+k − 〈n2〉

)
. (4.9)

As in the previous section, n1 is the sum of the binned spike trains s1 and t1, i.e.,
n1 = s1 + t1 and similarly n2 = s2 + t2. Inserting these, we get

∑
i

(
n1
i − 〈n1〉

)(
n2
i+k − 〈n2〉

)
=
∑
i

n1
in

2
i+k −

∑
i

n1
i 〈n2〉 −

∑
i

n2
i+k 〈n1〉+

∑
i

〈n1〉 〈n2〉 (4.10a)

=
∑
i

(
s1
i + t1i

)(
s2
i+k + t2i+k

)
−
∑
i

(
s1
i + t1i

)(
〈s2〉+ 〈t2〉

)
(4.10b)

−
∑
i

(
s2
i+k + t2i+k

)(
〈s1〉+ 〈t1〉

)
+
∑
i

(
〈s1〉+ 〈t1〉

)(
〈s2〉+ 〈t2〉

)

53

4 Using Correlated Spike Trains from the Sea of Boltzmann Machines

+/-?

exc. Poisson source

inh. Poisson source

E I E I

Figure 4.7: The two neurons with the largest absolute weight of the red BM used for
sampling get correlated noise from the blue BMs. Whether a spike train is
connected inhibitory or excitatory is decided randomly with equal probability.
The weights of the blue neurons are chosen randomly as well but from a single
beta distribution to assert extreme values. Choosing the weights randomly
and using spike trains from different, independent noise-generating BMs will
lead to a cancellation of correlations in the resulting overall noise.

=
∑
i

(
s1
i − 〈s1〉

)(
s2
i+k − 〈s2〉

)
+
∑
i

(
s1
i − 〈s1〉

)(
t2i+k − 〈t2〉

)
(4.10c)

+
∑
i

(
t1i − 〈t1〉

)(
s2
i+k − 〈s2〉

)
+
∑
i

(
〈t1i 〉 − 〈t1〉

)(
〈t2i+k〉+ 〈t2〉

)
= corr(s1, s2)k

√
Var(s1)Var(s2) + corr(s1, t2)k

√
Var(s1)Var(t2) (4.10d)

+ corr(t1, s2)k
√

Var(t1)Var(s2) + corr(t1, t2)k
√

Var(t1)Var(t2)

after reordering terms. The normalization Z is given by

Z =
√

Var(n1)Var(n2) (4.11)

54

4.2 Distributing Correlated Spike Trains

and the variation of e.g. n1, with N the number of bins, can be rewritten as follows:

Var(n1) =
1

N

∑
i

(
n1
i − 〈n1〉

)2 (4.12a)

=
1

N

∑
i

(
s1
i − 〈s1〉+ t1i − 〈t1〉

)2 (4.12b)

=
1

N

∑
i

(
s1
i − 〈s1〉

)2
+

1

N

∑
i

(
t1i − 〈t1〉

)2 (4.12c)

+
2

N

∑
i

(
s1
i − 〈s1〉

)(
t1i − 〈t1〉

)
(4.12d)

= Var(s1) + Var(t1) + 2 cov(s1, t1) . (4.12e)

Since s1 and t1 as well as s2 and t2 are uncorrelated, all correlation or covariance
terms between them vanish. Thus, the correlation function of n1 and n2 finally takes
the following form:

corr(n1, n2)k =
corr(s1, s2)k

√
Var(s1)Var(s2) + corr(t1, t2)k

√
Var(t1)Var(t2)√

Var(s1) + Var(t1)
√

Var(s2) + Var(t2)
(4.13)

and for equal variances

corr(n1, n2)k =
corr(s1, s2)k + corr(t1, t2)k

2
. (4.14)

The final cross-correlation of the two resulting spike trains is hence approximately
given by the average correlation of the individual spike trains. This is illustrated in Fig.
4.8, where the theoretical result is compared with simulation results.

Adding even more correlated spike trains will simply increase the terms included in the
average. Hence, adding up many of these spike trains with random correlations drawn
from identical but independent distributions, the central limit theorem tells us that the
final cross-correlation of the resulting spike trains will be Gaussian-distributed. Since
the weight distributions are symmetric around zero, i.e., their mean is zero, the average
value of the Gaussian will also be zero. Furthermore, according to the central limit
theorem the width of the resulting Gaussian distribution scales reciprocal to the square
root of the number of added spike trains. Thus, if the weights of the noise-generating
BMs are drawn from a distribution with zero mean, we can diminish the correlation of
the input noise by increasing the number of sea BMs. In the limit of infinitely many, the
input will be completely uncorrelated. In Fig. 4.9, the distributions of final correlations
are shown for different numbers of noise-generating BMs.

55

4 Using Correlated Spike Trains from the Sea of Boltzmann Machines

40 20 0 20 40
∆t [ms]

0.5

0.0

0.5

1.0
crosscorr. 1

crosscorr. 2

merged

theory

40 20 0 20 40
∆t [ms]

1.0

0.5

0.0

0.5

1.0
crosscorr. 1

crosscorr. 2

merged

theory

40 20 0 20 40
∆t [ms]

0.0

0.5

1.0
crosscorr. 1

crosscorr. 2

merged

theory

40 20 0 20 40
∆t [ms]

0.4

0.2

0.0

crosscorr. 1

crosscorr. 2

merged

theory

Figure 4.8: Correlation functions of two pairs of spike trains that are merged. Since
neurons of a BM are connected via a synaptic weight, their spike trains are
correlated. If we take the spike trains from two such neuron pairs, i.e., from
the first pair the spike trains (s1, s2) and from the second one (t1, t2) and
merge them to n1 = s1 + t1 and n2 = s2 + t2, the correlation function of the
resulting spike trains (blue) can be calculated from the correlation functions
of the individual pairs (gray). Note that this way, adding up negatively and
positively correlated spike trains reduces the final correlation (top). Adding
up spike trains with similar correlations leads to a weighted average as
the final correlation (bottom). The theoretical result (red) is calculated by
inserting the individual correlation functions (gray) into Eq. 4.13.

56

4.2 Distributing Correlated Spike Trains

0.4 0.2 0.0 0.2 0.4
correlation coefficient ρ

0

5

10

15

distr.

10 BMs as noise

0.4 0.2 0.0 0.2 0.4
correlation coefficient ρ

0

5

10

15

distr.

10 BMs as noise

20 BMs as noise

0.4 0.2 0.0 0.2 0.4
correlation coefficient ρ

0

5

10

15

distr.

20 BMs as noise

50 BMs as noise

0.4 0.2 0.0 0.2 0.4
correlation coefficient ρ

0

5

10

15

distr.

50 BMs as noise

100 BMs as noise

0.4 0.2 0.0 0.2 0.4
correlation coefficient ρ

0

5

10

15

distr.

100 BMs as noise

500 BMs as noise

0.4 0.2 0.0 0.2 0.4
correlation coefficient ρ

0

5

10

15

distr.

500 BMs as noise

2000 BMs as noise

Figure 4.9: Distribution of correlation coefficients between the noise inputs of two con-
nected neurons n1 and n2 that receive noise from a sea of BMs. From each
noise-generating BM, one spike train is fed to the first neuron n1 with ran-
domly chosen synapse type and the second spike train to neuron n2, also
with random synapse type. This was repeated 2000 times and plotted in
histograms for different numbers of BMs providing noise. In each figure,
the previous histogram is included in blue to emphasize that increasing the
number of BMs leads to a narrower width of the correlation distribution.
This way, the correlations due to synaptic weights in the noise-giving BMs
can be reduced by including many positively and negatively correlated spike
trains.

57

4 Using Correlated Spike Trains from the Sea of Boltzmann Machines

4.2.2 Mixing Synapse Types

It turns out that not only the sign of the weights between noise-generating neurons
is important, but also the synapse type of connections. We will look at two types of
patterns:

1. A symmetric connection pattern, i.e., both spike trains are either connected exci-
tatorily (EE) or both are connected inhibitorily (II).

2. An asymmetric connection pattern, i.e., both spike trains are connected with
different synapse types (EI or IE).

The first pattern will result in a direct translation of the input correlation to a similar
correlation between the outgoing spikes. Thus, if the incoming spikes are positively cor-
related, the outgoing spikes will also be positively correlated (and the same for negative
correlations). However, the second pattern inverts input correlations, i.e., positive input
correlations lead to negative output correlations and vice versa.

ρ

E E
I I

or

ρ

E
EI
I

or

+/-

+/-

+/-

-/+

Figure 4.10: Poisson-driven BMs (blue) provide noise to two unconnected neurons (red).
(left) If the sign of the weight between the blue neurons is fixed and their
spike trains are connected with a symmetric pattern to the two red neu-
rons, i.e., both with the same synapse type, then a positive/negative input
correlation is translated to a positive/negative correlation ρ between the
two red neurons. (right) However, if the connection pattern is asymmetric,
i.e., both spike trains are connected with different synapse types, then the
sign of the correlation is swapped from the blue to the red neurons.

Consequently, even if we only have positive (or negative) input correlations, by adding
up spike trains of many sea BMs with randomly chosen connection patterns, we again
obtain a sum of positively and negatively correlated spike trains as in the previous
section which will average out if the number of noise-generating BMs is large enough.
This is demonstrated in Fig. 4.11.

58

4.2 Distributing Correlated Spike Trains

-

0
ρ

rand rand

-

+
ρ

E E
I I

or

-

- ρ

E
EI
I

or

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
correlation coeff cient

0

5

10

15

20

25

30

35

40

45

no
rm

.d
is

tr
ib

ut
io

n

EI/IE
EE/II
random

Figure 4.11: Histogram over the final correlation ρ between the two red neurons after
receiving noise from the blue BMs with (left) symmetric patterns, (right)
asymmetric patterns and (middle) randomly chosen connections of both
patterns. For each simulation, the number of noise-generating BMs was
automatically chosen to reach a minimum noise frequency of 800Hz. The
weight of each noise-generating BM is randomly chosen from a beta dis-
tribution W noise ∝ 6 ·

(
beta(0.5, 0.5) − 0.5

)
. 200 simulation results are

included in the histogram. (left) Negative input correlations are simply
translated to a negatively correlated output. (right) Similarly, negative
input correlations are reversed to positively correlated output for asymmet-
ric patterns. (middle) If each BM is randomly connected with either a
symmetric or asymmetric pattern, the positive and negative correlations
in the output will cancel out. Of course, the same holds true for positive
input correlations. Note that E stands for Excitatory and I for Inhibitory.

59

4 Using Correlated Spike Trains from the Sea of Boltzmann Machines

Note that our previous way of measuring correlations will not work here anymore,
since the input noise spikes are still strongly correlated and only become decorrelated
due to synaptic interaction. Hence, it is not sufficient to consider the input spike train
correlations, but instead we need to look at the correlation in the spiking activity of
the neurons that receive these inputs. In order to facilitate this, the (correlated) noise
trains are fed to two unconnected neurons, i.e., with synaptic weight W01 = W10 = 0
and b0 = b1 = 0. This corresponds to sampling from a Boltzmann distribution with
probabilities p11 = p00 = p10 = p01 = 0.25 with indices denoting the state of the
two neurons. The correlation coefficient of the states can then be used as a natural
way of measuring how correlated the neurons are spiking, taking into account possible
decorrelations coming from the synaptic interaction.
The correlation coefficient of the states is given by (Bytschok , 2011)

ρ =
p11 − p1

1p
2
1√(

p1
1 − (p1

1)2
)(
p2

1 − (p2
1)2
) (4.15)

with pi1 being the marginal spiking probability of neuron i.

4.2.3 LIF Sampling with Correlated Noise

As it turns out, if we average over enough input spike trains, the effect of input correlations
can be easily reduced. Correlations between spike trains of the same BM are unavoidable
as they are imprinted by synaptic connections. However, the spike trains of independent
BMs, i.e., of unconnected neurons, are completely uncorrelated. Hence, spike pairs from
independent BMs can be mixed and, if we allow both positive and negative weights, this
will lead to a cancellation of input correlations.

Additionally, the translated correlation from the input neurons to the states of the
output neurons can be modulated by randomly choosing the synapse type for each noise
spike train. This way, even though the input is strongly correlated, the output can still
be uncorrelated.

In Fig. 4.12, the LIF sampling quality for a BM of 3 neurons is compared for different
numbers of noise-generating BMs. Two neurons of the sampling BM receive correlated
noise from BMs with weights randomly generated from a symmetric beta distribution
W noise ∝ 6 ·

(
beta(0.5, 0.5) − 0.5

)
. Furthermore, each spike train is connected to a

randomly chosen synapse type, so both mechanisms of decorrelation apply. The third
neuron receives its noise from a network of independent noise-generating BMs. As
expected, the DKL improves if we increase the number of inputs, since input correlations
are averaged out.

60

4.2 Distributing Correlated Spike Trains

101 102 103 104 105 106

simulation time [ms]

10-3

10-2

10-1

100

DKL

10 BMs per neuron

20 BMs per neuron

Poisson noise

101 102 103 104 105 106

simulation time [ms]

10-3

10-2

10-1

100

DKL

10 BMs per neuron

100 BMs per neuron

Poisson noise

Figure 4.12: DKL for sampling from a 3-neuron BM with correlated noise coming from a
sea of BMs. Again, the BM was used to sample from 24 different Boltzmann
distributions, all drawn randomly with Eq. 4.7a and 4.7b. The simulation
was repeated 20 times for different random seeds. The shaded areas mark
the interval between the 15th and 85th percentile over all single DKL curves.
For a rather small number of BMs in the sea, the final DKL is worse than
for ideal LIF sampling with Poisson sources due to correlations between
noise spike trains. However, by increasing the sea size (for instance from 10
to 20 BMs (top) and from 10 to 100 BMs (bottom)), we can again reach
similar results as with Poisson noise since possible input correlations are
averaged out.

61

5 Connecting the Sea of Boltzmann
Machines to a Large Network

Up until now, the sea BMs were still driven by Poisson noise and only a single BM
received noise from the sea instead of Poisson sources. Even though this setup is rather
impractical, it gives us some insights into what to expect when exchanging Poisson
background with intrinsic network connections in the sea of BMs.

First of all, the case of one BM getting noise from completely independent BMs can
be reproduced in the limit of infinitely many BMs (N → ∞), all interconnected with
a small connectivity ε such that N · ε � 1 guarantees large enough noise frequencies
for the high-conductance state. In Chap. 3 it was demonstrated that a BM driven by
independent spike trains coming from other BMs can perform LIF sampling without any
restrictions. Thus, if we remove all Poisson sources from the network, each BM will still
receive a finite number of completely independent noise inputs coming from the network
itself and therefore be able to correctly sample from its target Boltzmann distribution.
However, this limit is not a practical one, since all sensible physical systems are

limited in size, from software simulations of neural networks to the brain itself. In the
particularly interesting case of neuromorphic hardware, for example, the network’s size
is in general limited by hardware constraints, as for instance the number of available
neurons and synapses. Therefore, the main concern of the following chapter lies in
whether the needed Poisson stimuli in a finite-sized network of BMs can be reduced via
intrinsic noise coming from within the network itself.
Firstly, we will connect a number of Poisson-driven BMs to a network by introduc-

ing interconnections between them. Each BM samples from another distribution with
Boltzmann parameters randomly drawn from beta distributions

W ∝ W0 ·
(
beta(0.5, 0.5)− 0.5

)
, (5.1a)

b ∝ 1.2 ·
(
beta(0.5, 0.5)− 0.5

)
, (5.1b)

again with a weight scaling factor W0. The interconnections Wint are also drawn from
a modified beta distribution that resembles a bimodal Gaussian – with one mode for
negative and one for positive weights. The beta distribution has been chosen to provide
a more general setup with randomly selected noise weights that are still bounded, i.e.,
they cannot be arbitrarily large. Furthermore, a parameter η = #inh. conn.

#exc. conn.
determining

63

5 Connecting the Sea of Boltzmann Machines to a Large Network

the ratio of total inhibitory to excitatory connections as well as a parameter g = − 〈winh〉
〈wexc〉

for adjusting the ratio of connection strengths was added. The noise weight from neuron
i to j is then drawn from

Wint,ij ∝
[(

beta(4.0, 4.0)− 0.5
)
· 2σW + µW

]
· gij · (−1)Sij ·Bij (5.2)

with

Sij = binomial
(
1, η) , (5.3a)

gij =
1

max(1, g)

[(
Sij · (g − 1)

)
+ 1
]
, (5.3b)

Bij =

0 if i ≥ j and i− j < i mod Nneurons + 1 ,

0 if i < j and j − i < j mod Nneurons + 1 ,

1 else,
(5.3c)

where Sij is 1 with probability η and 0 with probability 1 − η. The Sij factor decides
if a connection is inhibitory or excitatory and is further used to automatically rescale
the weights with g. For example, setting η = 1 would result in only inhibitory noise
connections, and η = 0 in only excitatory ones. The parameters of the beta distribution
were chosen to obtain a Gaussian-like shape. Further, µW and σW are the mean and
width of either the positive or negative noise weights (depending on g). g simply changes
the ratio between the mean excitatory and mean inhibitory weights. For instance, if
g > 1, inhibitory weights are drawn from a Gaussian-shaped distribution with mean
µW and width σW, and excitatory weights from a distribution with mean µW

g
and σW

g
.

Similarly, if g < 1, excitatory weights are drawn with mean µW and width σW, and
inhibitory weights with g · µW and g · σW. Note that by demanding σW ≤ µW, the
distribution for positive and negative weights are always bounded by 0. Furthermore,
rescaling the weight matrix Wint by a constant factor leaves the mean-to-width ratio of
the distributions invariant, which ensures that even when rescaling, the distributions
for negative and positive weights are bounded by 0. Bij is a block diagonal matrix with
zeroes on the block diagonal and ones everywhere else in order to ensure that neurons
of the same BM do not "provide noise" to each other. Nneurons is the number of neurons
per BM. Note that by choosing σW = 0, the positive and negative weights will be drawn
from delta-peaked distributions, i.e., all excitatory weights are identical and all inhibitory
weights are identical.

The interconnection matrix Wint is furthermore not symmetric. This construction has
been chosen since, even if some neurons get the same noise spike trains, having random
weights will diminish the effect of shared-input correlations as was demonstrated in the
previous chapter. Illustrations of Eq. 5.2 can be found in App. 8.6.

64

The connectivity ε is implemented by setting a fraction 1− ε of the noise connections
of each neuron to 0. For example, the input noise neurons that feed neuron i are given by
Ci = {j | j : Wint,ij 6= 0}. From this list, |Ci| · ε entries are randomly deleted, with |Ci|
being the number of elements in Ci. For the remaining entries C̄i, all interconnection
weights are set to 0, i.e., Wij = 0 if j ∈ C̄i.

Wint

W
BM,1

W
BM,3

W
BM,2

exc. Poisson source

inh. Poisson source

Figure 5.1: The three setups discussed in the following sections. (left) Several BMs
driven by Poisson noise that sample from different Boltzmann distributions
are interconnected. These additional connections are not part of the Boltz-
mann distributions and are regarded as background noise. Afterwards, there
are two ways to continue: (top right) Fading out the Poisson noise fre-
quencies, i.e., reducing the frequency of all Poisson sources during runtime,
which in turn reduces the overall bandwidth needed to run the BMs. (bot-
tom right) The second way to reduce the required noise bandwidth is to
cut off some of the Poisson sources, i.e., we reduce the number of external
connections plugged into the network.

65

5 Connecting the Sea of Boltzmann Machines to a Large Network

After connecting the network BMs, two ways of removing Poisson noise will be used:
Firstly, the input frequency of all Poisson inputs will be smoothly reduced, i.e., the
Poisson noise gets slowly faded out. Secondly, instead of fading out all frequencies, a
certain number of Poisson connections will be cut away altogether but the frequency
remains constant. This will enable us to safely move to a network without any Poisson
stimuli by either fading out the Poisson frequencies to 0 or by cutting off all external
Poisson sources. A schematic of all three setups discussed in the following sections can
be found in Fig. 5.1.

5.1 Introducing Interconnections in the Sea

5.1.1 Calibrating on Intrinsic Noise

One major issue when adding intrinsic network noise to the already available Poisson
sources is that the activation function of each neuron changes depending on the intrinsic
connection strengths. Furthermore, it is not at all trivial to find the correct activation
function of each neuron since all neurons act, on one hand, as a noise source for other
neurons, and receive noise from network neurons on the other. Hence, adding such
intrinsic noise connections introduces feedback loops into the network, meaning that
changing the spike behavior of neuron a, for instance by changing its calibration function,
has a significant effect on the behavior of other network neurons, which in turn has an
effect on neuron a again as it receives noise from the network.

Even though this problem is hard to solve, having sparse networks helps to get close to
the ideal calibration function of each neuron, since its effect on the overall network and,
most significantly, the effect on neurons providing feedback is less pronounced. Having
Poisson noise in addition to intrinsic noise connections further stabilizes the calibration
scheme for weak intrinsic connections. By slowly increasing the interconnection strengths,
we can transition into a regime where the network is mainly driven by intrinsic noise.

Note that if the network BMs are still able to sample while being mainly driven
by spike trains coming from the network itself, it should in principle be possible to
reduce the overall Poisson bandwidth instead of the weight ratio between intrinsic and
Poisson connections. In doing so, we should end up in a similar network setup where
the intrinsic noise is compensating for the loss of Poisson stimuli.

To calibrate each neuron, an iterative scheme (see Fig. 5.2) was used at first. The
idea was to compensate for possible changes due to feedback by slowly increasing the
interconnection weights from 0 to their final desired value. This way, we would start by
calibrating each BM only with Poisson noise, sample from every Boltzmann distribution,
take the spike trains, and use these as an approximation of the spike trains we expect
to see when introducing a very small increase in the interconnection weights. It is then
possible to calibrate every neuron on its Poisson input and on a representation of what

66

5.1 Introducing Interconnections in the Sea

to expect as input coming from the network.
However, it turned out that this perturbative ansatz leads to unstable results for

interconnection weights larger than the Poisson weights and can be replaced by a greedy
simplification that is stable for large interconnection weights and leads to similar results
as the iterative scheme for small weights (see Fig. 5.3).

The instabilities occur because of strong synchronizations in the network originating
from a drastic difference between the noise input used for calibration and the actually
observed noise while sampling. This way, if a neuron provides, for instance, excitatory
noise to a subset of network neurons, but it is more active than anticipated during
calibration, this will result in a synchronization of the subset of neurons and the noise
neuron, i.e., they get more active than expected as well. For strong interconnections,
this leads to subsets of neurons that either burst or remain completely silent as shown
in App. 8.8.5.

Create all BM param-
eters + the intercon-
nection weights Wint.

Set the used interconn.
weights W used

int = 0
and ∆W = 1

N
Wint.

Initialize all BMs with
interconnections W used

int .

Run the network of
BMs with Poisson noise.

Save the spike train
of every neuron and

increase Wused
int += ∆W .

Recalibrate each neuron
by adding the saved spike
trains with weights W used

int

to the Poisson noise.

counter < N?

counter = 0

counter += 1

Figure 5.2: Iterative calibration scheme. In each iteration, the spike trains from the
previous step are used for calibration to approximate the intrinsic noise each
neuron will see during sampling. The scheme starts with no interconnec-
tion weights and gradually increases these weights throughout each step. It
turns out that, because of correlations between network neurons, this scheme
becomes unstable for weights much larger than the used Poisson weights.

67

5 Connecting the Sea of Boltzmann Machines to a Large Network

Create all BM param-
eters + the inter-
connection weights.

Initialize all BMs without
interconnections.

Sample from all BMs
with Poisson noise only.

Save the spike train
of every neuron.

Recalibrate each neuron
by adding the saved spike
trains with the according
interconnection weights
to the Poisson noise.

Connect all BMs
and sample with

the new calibrations.

Figure 5.3: Greedy calibration scheme. In principle, it is very similar to the iterative
scheme presented in Fig. 5.2. However, the whole iteration process is left out
and the interconnection strengths are immediately set to their final value
after a single iteration. Since we expect LIF sampling to work for sparse
enough networks, this is a valid approach as the spike train statistics of every
neuron should remain the same with and without interconnection weights.
Hence, the spike trains obtained from ideal LIF sampling with Poisson noise
only should be a relatively good approximation of the intrinsic noise each
neuron observes while sampling.

In the greedy approach, the spike trains obtained from ideal LIF sampling with
Poisson noise only are used as an approximation for the intrinsic noise each neuron will
see while sampling with interconnections turned on. Hence, we assume that all BMs will
still be able to correctly sample from their target Boltzmann distribution with intrinsic
noise and therefore, the spike train statistics of each neuron should not change in any
significant way from the ideal Poisson case. Of course, this is not entirely true since
shared-input correlations or correlations between neurons of independent BMs in the
network distort the Boltzmann distribution each BM is sampling from. These network-
wide correlation effects are also the reason why the iterative scheme fails for large
weights as they cannot be compensated by recalibrating every neuron, since neurons are

68

5.1 Introducing Interconnections in the Sea

completely unconnected and independent during calibration. Therefore, in the iterative
scheme, errors introduced by correlations add up over several iteration steps, leading to
the unstable behavior for large interconnection weights.
For this reason, only the greedy calibration scheme will be used in all following

chapters. Moreover, neglecting all iteration steps increases the speed of the calibration
process, enabling us to look at larger networks without running into problems with large
simulation durations.

5.1.2 Dealing with Network-Wide Correlations

In Chap. 4 it was demonstrated that input correlations can be dealt with by averaging
over enough input spike trains. However, this only worked since we had no feedback
connections, i.e., an isolated BM got noise from a pool of completely independent BMs.
If we have a network of BMs which provide noise to each other via additional inter-

connections, the situation becomes more complex. For instance, since each BM provides
noise to many other neurons in the network, but also receives noise from neurons inside
the network, (higher order) feedback loops can have a significant impact on the network
dynamics as a whole.

shared
input

correlated
input

higher order
correlation

feedback

Figure 5.4: Possible ways how correlations can be introduced and propagated through
the network. Since the network size is finite, some neurons have to share the
same input (blue), leading to shared-input correlations. Furthermore, two
correlated neurons can provide noise to independent or connected neurons,
altering their initial correlation (green). Finally, we can also have feedback
connections, i.e., a pair of correlated neurons provides noise to each other
(cyan), and many ways of higher order correlations (magenta).

69

5 Connecting the Sea of Boltzmann Machines to a Large Network

The simplest kind of correlations are shared-input correlations, appearing naturally
because every neuron is getting its noise from a finite pool of neurons. Correlations
due to input from neurons that are connected via a synapse or are somehow otherwise
correlated, for example because of shared-input correlations, are also possible and have
been discussed in Chap. 4. In addition, feedback is possible as well since every single
neuron is feeding noise into the same system it is receiving its own noise from. Some
possible example cases are presented in Fig. 5.4. Introducing interconnections thus
leads to a propagation and possibly amplification of correlations in the network.

A similar problem was analysed in Kumar et al. (2008). They investigated whether it
is possible to have a recurrent network of LIF COBA neurons that are able to sustain
their firing state without any external input over some time. Interestingly, they found
out that the network can spontaneously die out to a zero-rate state due to strong
network synchronizations. As in our case, these network synchronizations originate
from unavoidable overlaps of input noise sources as well as pairwise and higher order
correlations in the network.

However, the effect of these correlations can be diminished by increasing the network
size but keeping the number of inputs every neuron receives fixed. This way, the number
of shared inputs decreases and (higher order) feedback loops become less problematic
because of the reduced connectivity in the network, i.e., the network of BMs becomes
sparser and correlations can propagate less. For instance, if two neurons obtain on
average ε ·N inputs from a pool of N neurons, they will share on average ε2 ·N inputs.
Increasing N while decreasing ε ∝ 1

N
will reduce the number of shared inputs ε2 ·N ∝ 1

N
.

This procedure is demonstrated in Fig. 5.5 where the total number of inhibitory and
excitatory inputs every neuron receives is fixed to ε · (NBMs− 1) ·Nneurons = 20. Nneurons

is the number of neurons per BM and was set to 3, NBMs is the number of BMs in the
network and was varied from 10 to 150. The Boltzmann parameters were randomly
drawn from the beta distributions given in Eq. 5.1a and 5.1b with W0 = 1.2. Also note
that the neuron parameters are still the same as in the previous chapters. The synaptic
ratios η and g as well as the mean-to-width ratio of the interconnection distribution
were all set to 1.

As can be seen in Fig. 5.5, the overall LIF sampling quality increases over the range
of investigated interconnection strengths for sparser networks. Increasing the network
size while decreasing the connectivity leads to less correlations in the network. We can
actually look at two kind of correlations: The correlation of states between neurons
of the same BM and the correlation between neurons of different BMs. The former
is predetermined by the synaptic weight connecting the two neurons, but will differ
because of correlated input. Neurons of different BMs should be completely independent
as no functional synaptic weight connects them. Therefore, the states of such neuron
pairs should be completely uncorrelated which is however not the case for finite-sized
networks with intrinsic noise connections.

70

5.1 Introducing Interconnections in the Sea

0 2 4 6 8
maximum weight [ωP]

10-3

10-2

10-1

100

DKL

after 106 ms

10 BMs

20 BMs

50 BMs

150 BMs

Figure 5.5: Mean DKL of all network BMs after sampling for 106ms shown for different
network sizes. The connectivity is adjusted such that the mean number of
inputs every neuron gets is held constant. First note that the DKL saturates
for high interconnection weights as correlations in the network are maximized.
Also, the small abrupt deviations as seen for instance in the magenta curve
are systematic and result from failed calibrations. This demonstrates that
even a small number of wrongly calibrated neurons in the network can have
a significant effect on the sampling quality. Furthermore, for weights that are
small compared to the Poisson noise weights ωp, the sampling quality stays
constant. As expected, the overall sampling quality improves for sparser
networks. The simulation was repeated for five different random seeds. The
connectivities used are (blue) ε = 74%, (green) ε = 36%, (black) ε = 14%
and (magenta) ε = 5%.

In Fig. 5.6, the state correlation coefficients between neurons belonging to the same
BM from the simulations of Fig. 5.5 were plotted in a histogram. This was once done
for the completely unconnected network, i.e., every neuron receiving Poisson noise and
the correlations only depending on the synaptic weights connecting them, and for the
network with maximum interconnection weights.

For small network sizes, the correlation coefficients of the unconnected and connected
case differ drastically. This explains the bad sampling quality, as the neurons of a BM
are not able to follow the target state distribution because of the additional correlations.
But decreasing the connectivity of the network while increasing the network size reduces
the shared-input correlations as expected.
The same can be observed for the correlations between neurons of different BMs, as

demonstrated in Fig. 5.7.

71

5 Connecting the Sea of Boltzmann Machines to a Large Network

1.0 0.5 0.0 0.5 1.0
correlation coeff.

0

2

4

6

distr.

10 BMs, no intercon.

10 BMs, intercon.

1.0 0.5 0.0 0.5 1.0
correlation coeff.

0

2

4

6

distr.

20 BMs, no intercon.

20 BMs, intercon.

1.0 0.5 0.0 0.5 1.0
correlation coeff.

0

2

4

6

distr.

50 BMs, no intercon.

50 BMs, intercon.

1.0 0.5 0.0 0.5 1.0
correlation coeff.

0

2

4

6

distr.

150 BMs, no intercon.

150 BMs, intercon.

Figure 5.6: State correlations of neuron pairs in a network of BMs. The correlations
are only evaluated from neuron pairs that belong to the same BM. If the
network of BMs is unconnected, the correlation coefficients are determined
by the synaptic weights of the BMs only (blue). Introducing intrinsic noise
connections will distort the correlation structure between neurons of the
same BM (red), reducing the overall sampling quality. One possible source
for correlations are shared-input correlations which appear naturally due
to the finite number of neurons in the network. These can be reduced by
increasing the network size while keeping the input each neuron receives
constant. This way, the network becomes sparser, i.e., less connected, and
network-wide correlations are weaker.

72

5.1 Introducing Interconnections in the Sea

1.0 0.5 0.0 0.5 1.0
correlation coeff.

0

2

4

6

distr.

10 BMs

1.0 0.5 0.0 0.5 1.0
correlation coeff.

0

2

4

6

distr.

10 BMs

20 BMs

1.0 0.5 0.0 0.5 1.0
correlation coeff.

0

2

4

6

distr.

20 BMs

50 BMs

1.0 0.5 0.0 0.5 1.0
correlation coeff.

0

2

4

6

distr.

50 BMs

150 BMs

Figure 5.7: Similar setup to the one in Fig. 5.6, but for neuron pairs of different BMs.
At most 500 pairs were evaluated for each histogram. If two neurons of
the network are not part of the same BM, no functional synaptic weight
connects them and their dynamics should be completely independent. But
again, shared inputs and feedback loops lead to synchronizations between
otherwise independent neurons. For example, if such a neuron pair is pos-
itively correlated, they will both spike preferably together. However, both
neurons are part of a distinct BM and should follow a certain distribution
of state overlaps determined by the respective Boltzmann parameters. The
correlations between neurons of different BMs therefore distort these state
overlaps, resulting in a loss of sampling quality.

73

5 Connecting the Sea of Boltzmann Machines to a Large Network

Moreover, in all cases, the quality can be adjusted by choosing the interconnection
weights small enough in comparison to the Poisson noise weights ωp. This is not surprising
since the Poisson noise acts as a source of uncorrelated input. It therefore diminishes
the effect of correlations induced by the interconnections. By increasing or decreasing
the strength of the Poisson stimuli, the interconnection weight strength at which a
deterioration of the sampling quality is observed can be increased or decreased, as
demonstrated in Fig. 5.8.

0 2 4 6 8
mean weight [ωp]

10-3

10-2

10-1

DKL

after 106 ms

ωp =0.5 ω 0
p

ωp =ω 0
p =0.001µS

ωp =2.0 ω 0
p

ωp =4.0 ω 0
p

Figure 5.8: Similar setup to the one in Fig. 5.5. In a network of 50 3-neuron BMs, the
strength of the Poisson sources was varied. This leads to differently dras-
tic changes in DKL when increasing the interconnection weight strengths.
Since the Poisson sources act as an uncorrelated input, the influence of the
correlated input coming from the network depends on the relative strength
between Poisson and network noise. If the Poisson strength is reduced, the
sampling quality already worsens for weaker interconnection weights. Sim-
ilarly, increasing the Poisson weights allows larger interconnection weights.
All in all, the strength of the Poisson input ωp sets the scale of usable
interconnection weights.

It is worth noting that after connecting and newly calibrating every neuron, their
spiking activity becomes more irregular. This can be quantified by calculating the
coefficient of variation of the interspike intervals CVISI for each neuron. It is defined as:

CVISI =
σISI

µISI

, (5.4)

where µISI is the mean distance of spikes and σISI the corresponding standard deviation.

74

5.1 Introducing Interconnections in the Sea

For instance, if the CVISI is larger than 1, the spike times are very irregular as the
standard deviation of spike distances is larger than the mean distance. Similarly, small
values of CVISI indicate very regular spiking as most spike distances are very similar.
A Poisson source creates spike trains with a CVISI of exactly 1. Normally, since LIF
neurons can have small periods of bursting with fixed refractory times, the CVISI of
their spike trains will be between 0 and 1. But introducing background noise increases
the irregularity of spiking, as seen in Fig. 5.9. Because every neuron provides noise to
the network, and the network noise to every neuron, small changes in the input noise a
neuron receives will slightly change its spiking behavior which in turn has an effect on
the network again. Therefore, because of this ’back-action’, it is actually quite intuitive
that interconnections will lead to a more irregular spiking activity.

0 2 4 6 8
maximum weight [ωP]

1.0

1.2

1.4

CVISI

20 BMs

50 BMs

150 BMs

Figure 5.9: Coefficient of variation of the interspike intervals. Using the background
activity of the network as an additional noise source results in more irregular
spiking activity as can be seen by the increasing CVISI for stronger network
weights.

We also have to ensure that the calibration used to translate theoretical Boltzmann
parameters to LIF parameters is approximately correct. In general, we will always have
the problem that we can only approximate the input a neuron receives from the network
as noise. In Fig. 5.10, the used calibration and the actually observed activation function
during the network run are compared for the case of 20 BMs and the maximum weights
shown in Fig. 5.5. Even though the approximated calibrations agree quite well with the
real activation functions, the shape of the activation function and the rest potential u0

at which the probability of being refractory is p(u0) = 0.5 are always slightly different.
These differences can again be reduced by decreasing the network connectivity as

shown in Fig. 5.11, where the number of BMs was increased to 150. However, small

75

5 Connecting the Sea of Boltzmann Machines to a Large Network

deviations between the used activation function and the real one still exist and are a
non-negligible source of error concerning LIF sampling in such networks.
Finally, as a side remark, it turns out that the mean-to-width ratio of the intercon-

nection weight distribution has no significant influence on the LIF sampling quality, see
App. 8.8.6. E.g. for high widths, we obtain both strong and weak weights that translate
to strong and weak correlations in the network. However, on average the total correlation
in the network does not change. It is therefore not necessary to tune the absolute noise
weights in any way as long as they scatter symmetrically around some mean value.

51.0 50.5 50.0 49.5
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

51.0 50.5 50.0 49.5
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

50.5 50.0 49.5 49.0
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

50.5 50.0 49.5 49.0
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

Figure 5.10: Activation functions of exemplary neurons with background noise coming
from the network. In red, the measured activity (dots) and the fitted ac-
tivation function (line) obtained from the greedy calibration scheme are
shown. In blue, the measured activity and resulting calibration function
with the real noise observed while running the interconnected network is
shown. The black dashed line marks the threshold potential. Even though
the guessed and real activities are rather similar, the differences are large
enough to affect the LIF sampling quality in a significant way. (top) Impre-
cise calibration functions can result in a wrongly translated bias because
of differences in the rest potential for which the activity is 50%, marked
in the plots as vertical dashed lines. (bottom) Furthermore, a difference
in slope will lead to wrongly translated weights, affecting the correlation
structure between neurons of a BM.

76

5.2 Intrinsic Noise Restoring Stochasticity

50.2 50.0 49.8 49.6 49.4 49.2
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

51.5 51.0 50.5 50.0 49.5
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

51.0 50.5 50.0 49.5
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

51.5 51.0 50.5 50.0 49.5
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

Figure 5.11: The same as in Fig. 5.10, but for a larger network that consists of 150
BMs. A sparser network does not only decrease network-wide correlations,
but also improves the agreement between the approximated and actual
activities consequently (top left). However, minor differences of varying
severity are still possible (top right and bottom).

5.2 Intrinsic Noise Restoring Stochasticity

In the previous section, we found that the DKL obtained from LIF sampling improves if
the network of BMs is sparse, i.e., consists of many BMs with low connectivity. In this
regime, the network activity can be described as being asynchronous irregular (AI) as the
mean CVISI is around or above one, depending on the strength of the interconnections,
and unwanted correlations resulting from noise spike trains are rather weak in comparison
to the functional correlations between neurons of the same BM.

Even though the setup is quite different, these results are similar to the observations
of Korcsák-Gorzó (2015), who recommended using inhibitorily dominated and sparsely
connected BMs operating in the AI state. Note that network connections are still
balanced in our case, but possible effects of inhibitorily dominated connections will be
discussed in Chap. 6. Furthermore, the strength of the network connections can be varied
to adjust the degree of additional correlations in the network. This will be important
in the following sections when reducing the Poisson bandwidth.

77

5 Connecting the Sea of Boltzmann Machines to a Large Network

5.2.1 The Poisson Fade-Out

The first ansatz to reduce Poisson bandwidth consists of globally fading out the Poisson
frequencies to a negligible level during runtime. This has been implemented by changing
the Poisson frequency from a starting frequency νstart to a target frequency νtarget < νstart

with a logistic function

ν(t) = νstart −
νstart − νtarget

1 + exp

(
− t−tν

σν

) , (5.5)

where tν = 5 · 103ms and σν = 102ms are used to adjust when and how smooth or
rapid the frequency is faded out (see Fig. 5.12). A continuous transition from start to
target frequency has been chosen to ensure that the network can smoothly adjust from
a Poisson-driven to a background-noise-driven network activity. Moreover, Kumar et al.
(2008) reported unstable behavior for abrupt changes of external input frequencies in
recurrent networks and used an exponential decay to turn off the external sources.

The calibration is done the following way: First, as in the greedy scheme, every BM is
run with Poisson noise with frequency νstart. Afterwards, the spike trains obtained from
sampling are used to calibrate every neuron with both background and Poisson noise,
however now with a reduced Poisson frequency νtarget. While sampling, the network will
start with strong Poisson input, ensuring that the neurons spike with a higher mean
frequency as dictated by the theoretical Boltzmann parameters. Decreasing the Poisson
frequency will smoothly change the spike behavior of every neuron until the target
frequency is reached and all neurons settle at an activity similar to the one used in
the calibration (see Fig. 5.12). This way, every neuron is sampling from its intended
Boltzmann distribution and provides correct noise to the rest of the network. This is a
fixed point in terms of the network activity as each neuron provides the correct spike
train statistics and receives the correct input noise to keep on sampling from the correct
distribution. Note that sampled states are only recorded after the fade-out.

In the following simulations, the neuron parameters have been changed to the values
found in App. 8.2, such that noise frequencies below several hundred Hertz have a
significant impact on the LIF sampling quality.

First, a small one-shot experiment was performed with a network of 200 3-neuron BMs.
The Boltzmann parameters were again randomly drawn from the beta distributions given
in Eq. 5.1a and 5.1b with W0 = 2.0. The size of the network was chosen this way to
lower correlations coming from the interconnections as was demonstrated in the previous
section. The remaining parameters were set to g = 1.0, η = 0.5 and σW

µW
= 1.0. The

average number of inputs each neuron gets was set to 28, which translates to a mean
excitatory and inhibitory background noise frequency of 700Hz. As already mentioned
in Fig. 5.12, the Poisson frequencies were set to νstart = 700Hz and νtarget = 2Hz.

For 2Hz Poisson input, the LIF neurons are all almost completely deterministic. This
can be easily seen by measuring their activation function as it has a non-logistic and

78

5.2 Intrinsic Noise Restoring Stochasticity

0 5 10 15
simulation time [s]

100

101

102

103

Poisson
 freq. [Hz]

νtarget =100Hz

νtarget =10Hz

νtarget =2Hz

0 5 10 15
simulation time [s]

45

50

55

60

65

70

network
mean

freq. [Hz]

Figure 5.12: (top) To reduce the Poisson bandwidth, the frequency of every Poisson
source is reduced with a logistic function, demonstrated here for several
different target frequencies νtarget and starting frequency νstart = 700Hz.
(bottom) Since the network starts with a higher Poisson frequency than
it was calibrated on, the mean network activity or mean frequency of all
network neurons is initially higher than during LIF sampling. Smoothly
decreasing the external Poisson frequency then lowers the mean frequency
of the network to the desired level specified by the neuron calibrations. This
is a fixed point where every neuron samples correctly from its distribution
and receives the correct noise input to have a similar activation function
as the one used while calibrating. The mean frequency was calculated by
averaging the total number of network spikes over 10ms intervals for the
case of νtarget = 2Hz, which is further discussed in Fig. 5.14.

79

5 Connecting the Sea of Boltzmann Machines to a Large Network

asymmetric shape (see Fig. 5.13). The activation function is not quite a Heaviside theta
function because of the finite time the neurons need to get from the reset potential
to the threshold again. Obviously, this has a drastic influence on the sampling quality
as the activation function encodes the conditional probability of a LIF neuron to be
refractory. However, if we add intrinsic network noise to the weak 2Hz Poisson sources,
the symmetric logistic shape of the activation function is recovered. Hence, the loss of
external noise gets compensated by the background activity of the network itself.

50.2 50.1 50.0 49.9 49.8
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function
vthresh

50.2 50.0 49.8 49.6 49.4
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

Figure 5.13: Activation functions without and with background noise coming from the
network itself. (left) Activation function of a neuron with 2Hz Poisson input
(dotted) and the corresponding logistic fit (line). The shape is reminiscent
of a deterministic neuron which only starts spiking when the rest potential
is set above threshold. The slow convergence to the maximum firing rate is
caused by the finite time the neuron needs to get from the reset potential to
the threshold again after spiking. (right) Adding background noise to the
2Hz Poisson input recovers the familiar logistic shape of a stochastic LIF
neuron. Both the activation function used for calibration and the observed
one during sampling are shown here.

This is also reflected in the mean DKL evolution while sampling (see Fig. 5.14). For
only 2Hz Poisson input, the lack of stochasticity prevents the BMs to traverse every
state according to its Boltzmann distribution. This results in much worse DKL values
on average than for high frequency Poisson input, e.g. 700Hz input. But introducing
interconnections recovers the stochasticity and the sampling quality improves notably.
Even though there is still a small difference to the quality reached by ideal Poisson
sources, it is quite surprising that sampling with almost no Poisson noise works so well
out of the box. Again, as in the previous section, the quality can be further improved
by making the network sparser.
Also note that the mean of the interconnection weights has to be adjusted carefully.

Values which are too high will lead to unnecessary correlations and synchronizations
in the network which distort the distributions sampled from. If the weights are chosen

80

5.2 Intrinsic Noise Restoring Stochasticity

101 102 103 104 105 106

simulation time [ms]

10-2

10-1

100

101

DKL

Poisson 700Hz

Poisson 2Hz

2Hz and µW =0.2 ωp

2Hz and µW =0.3 ωp

0.0 0.2 0.4 0.6 0.8 1.0
mean weight [ωp]

10-3

10-2

10-1

DKL

after 106 ms

Ideal Poisson with 700Hz

2Hz Poisson with network noise

000 001 010 011 100 101 110 111
states

10-2

10-1

100

Prob.

Poisson 700Hz Poisson 2Hz 2Hz and µW=0.3ωp theory

Figure 5.14: Mean sampling quality of a network consisting of 200 3-neuron BMs. (top)
Mean DKL over all BMs in the network as a function of the sampling time.
If we only use 2Hz Poisson sources, the sampling converges rather quickly
at much worse values than for the 700Hz Poisson sources. However, adding
intrinsic noise coming from the network improves the sampling quality sig-
nificantly. (middle) The sampling quality can be adjusted by changing the
strength of the interconnections. Weak connections prevent the network
neurons to reach the high-conductance state and too large weights intro-
duce strong correlations which distort the sampled distributions. (bottom)
Illustration of the sampled distribution of a single network BM with and
without intrinsic noise.

81

5 Connecting the Sea of Boltzmann Machines to a Large Network

too small, the background noise is not strong enough to heave the LIF neurons into the
high-conductance state, resulting in asymmetric activation functions.

Of course this also works for different target frequencies. Somewhat surprisingly, the
resulting sampling quality saturates for vanishing Poisson frequencies at DKL values very
close to the 2Hz case investigated before (see Fig. 5.16). Therefore, we are actually able
to completely fade-out the Poisson sources and keep on sampling stably by compensating
the missing external sources with intrinsic noise from the network.
The limiting case studied here damps the Poisson frequencies down to νtarget =

0.001Hz, at which point LIF sampling will break down completely. If interconnection
weights are introduced, but they are not strong enough, the neurons inside the network
will not be able to enter the high-conductance state, see Fig. 5.15. But again, increasing
the weights further pushes the neurons back into the high-conductance state, enabling
them to sample from their correct conditional probability.
This is a very important result as it allows us to exchange nearly all external noise

input with spike trains coming internally from the network of BMs. This is very similar
to the observation of the previous section where the final DKL saturated for very large
interconnection weights at non-extreme values. Similarly to the approach here, this also
represents a limiting case with Poisson input having almost no effect on the activation
function.

50.2 50.1 50.0 49.9 49.8 49.7
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

50.0 49.5
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

Figure 5.15: Activation function for a Poisson source with νtarget = 0.001Hz and back-
ground noise with varying connection strengths. (left) The mean strength
of the interconnection weights is 0.06 ωp and therefore too weak to push
the neurons into the high-conductance state. Even though the neuron is
not deterministic anymore, the activation function is not yet symmetric.
(right) By increasing the mean value of the interconnection weights, for
instance to 0.36 ωp, the symmetric shape can be regained despite the very
low-frequency Poisson sources.

82

5.2 Intrinsic Noise Restoring Stochasticity

0.0 0.2 0.4 0.6
mean weight [ωp]

10-2

10-1

100

DKL

after 106 ms

0.001Hz Poisson

0.1Hz Poisson

1.0Hz Poisson

5.0Hz Poisson

10.0Hz Poisson

50.0Hz Poisson

100.0Hz Poisson

200.0Hz Poisson

0.0 0.2 0.4 0.6
mean weight [ωp]

10-2

10-1

100

DKL

after 106 ms

0.001Hz Poisson

0.1Hz Poisson

1.0Hz Poisson

5.0Hz Poisson

10.0Hz Poisson

50.0Hz Poisson

100.0Hz Poisson

200.0Hz Poisson

Figure 5.16: Mean DKL of a 200 3-neuron BM network after sampling for 106ms for dif-
ferent target frequencies νtarget and different mean interconnection weights.
The simulation was repeated for two different random seeds, i.e., two differ-
ent network realizations, which are presented in the top and bottom plot.
For a mean weight of zero, we can clearly see how the sampling quality grad-
ually decreases for smaller Poisson frequencies. However, in all cases, the
loss of external noise can be compensated by increasing the interconnection
weights enough. Interestingly, the decrease in sampling quality saturates
at non-extreme DKL values, e.g. the DKL curves for νtarget = 0.1Hz and
νtarget = 0.001Hz are not distinguishable. Error bars have been excluded to
ensure readability.

83

5 Connecting the Sea of Boltzmann Machines to a Large Network

5.2.2 The Poisson Cut-Off

Another method to reduce the external bandwidth consists of cutting off Poisson sources
of single neurons. By doing so, some neurons will only receive noise coming from the
network, while some others will still get Poisson input in addition. For a neuromorphic
implementation, this means that only a subset of neurons need to be provided with
external noise.
With this approach, it is easy to gradually cut off all the external Poisson inputs

until none remain and the network has to generate its own stochasticity again. This
is demonstrated in Fig. 5.17. Note that, if we use the greedy calibration scheme, each
neuron only needs to be calibrated twice, once with and without Poisson sources on top
of the network background noise.

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of neurons without Poisson input

10-3

10-2

10-1

DKL

after 106 ms

30 BMs

210 BMs

Figure 5.17: Mean DKL after sampling for 106ms as a function of the percentage amount
of cut off Poisson sources. Again, as in the previous sections, it turns out that
the overall effect of cutting off external sources becomes less dominant for
larger and sparser networks. Furthermore, even when only half the neurons
still receive external noise, the effect on the sampling quality remains small.
Surprisingly, cutting off all external noise still leads to good and stable
results as long as the network is sparse enough. The parameters used in
the simulation are the same as in the previous section. The simulation was
repeated five times for different random seeds and the shaded areas represent
the interval between the 15th and 85th percentile over all measured DKL

values.

Again, as in the previous sections, the sampling quality will slightly decrease if we cut
off too many external noise sources. However, the change is quite small up to around

84

5.2 Intrinsic Noise Restoring Stochasticity

50-60% cut-off for a network of 210 3-neuron BMs. Comparing the similar setups in Fig.
5.5, 5.16 and 5.17, note that we arrive at similar DKL values in the limit cases of all
three different methods presented throughout the last sections. Even though this has not
been studied in detail, it is a very reassuring observation that we obtain similar results
for different methods of how to transition from a primarily Poisson-driven network to a
network driven by intrinsic noise.
Finally, all results presented here demonstrate that it is indeed possible to either

strongly reduce the Poisson input or even cut off all external noise sources without
drastically impairing the sampling results. This represents a core result of this thesis
and is a first convincing confirmation of the initial assumptions that have motivated it
in the first place. In the following chapter, we will go one step further by analysing the
dynamics of a network without any external Poisson sources in detail.

85

6 Stochastic LIF Networks Without
External Noise

6.1 Deterministic Start of Networks

In the previous chapter, we were able to demonstrate that the amount of external Poisson
sources needed for LIF sampling can not only be drastically reduced, but removed
altogether. The stochasticity is then solely provided by the background activity of the
network of BMs itself. However, it is interesting to ask how such a network reaches this
state of stable operation without any external noise sources to kick-start the network
in the first place.
This can be answered by looking at the case of g = 4, meaning the interconnections

between BMs have four times stronger inhibitory weights than excitatory ones. Because
the background noise is inhibitorily dominated, it will effectively generate a negative
bias. In order to compensate for this, neurons that require a higher bias will receive
a suprathreshold leak potential as a result of their calibration. Therefore, when the
activity in the network tends to die out, these neurons will receive no background noise
and they will be dominated by their suprathreshold leak, causing them to spike again,
thereby kickstarting the activity of the entire network.

Setting up such a network with initial membrane potentials below the threshold, the
start-up dynamics will only consist of the deterministic drift towards each neurons rest
potential. As soon as the membrane potential of a neuron reaches the threshold, it emits
a spike which is used as inhibitory noise input for other neurons in the network. Thus,
in the beginning, the mean activity of the network will have a large burst starting from
zero due to the deterministic drift, followed by a strong damping of the network activity
due to the strong inhibitory connections (see Fig. 6.1). However, as discussed above,
inhibition does not extinguish the network activity, but rather causes it to settle at the
desired activity needed for LIF sampling. Note that due to the strong inhibition, neither
the one-state with maximum mean activity τ−1

ref nor the zero-state are fixed points of
the network.
In fact, the network still starts for smaller values of g and stable sampling can be

guaranteed even for excitatory dominated interconnections, i.e., g < 1. However, in these
cases it is important to adjust the connectivity of the network to assure that enough
neurons have their rest potential above threshold. These are then able to excite the
remainder of the network with subthreshold rest potentials due to the strong excitatory

87

6 Stochastic LIF Networks Without External Noise

-52.0

-51.0

-50.0

0 20 40 60 80 100
-52.0

-51.0

-50.0
vm [mV]

simulation time [ms]
0 0.1 0.2 0.3

0

50

100

150

200

250

300

mean
freq. [Hz]

simulation time [s]

Figure 6.1: Deterministic start of a sea of BMs with g = 4. (left) Membrane potential
of two network neurons. Initially, all membrane potentials are set below
threshold. Since many neurons have a rest potential above threshold (here
-50mV), they start drifting towards it. After some neurons have spiked (top)
other neurons in the network are inhibited (bottom), keeping them from
spiking in the beginning. (right) Because of the deterministic drifts, many
neurons initially hit the threshold resulting in a strong burst in mean activity.
Afterwards, the strong inhibitory spikes dampen the network until it reaches
a stable mean activity.

connections (see Fig. 6.2). Hence, instead of the initial strong burst observed for g > 1, the
network slowly starts by activating more and more neurons, therefore slowly increasing
the mean network activity until the desired target frequency, predetermined by the
underlying Boltzmann distributions, is reached (see App. 8.8.8).
For g < 1, we can also start the network by using strong Poisson input which gets

slowly faded out as in Chap. 5.2.1. However, in cases where the network is not able to
start on its own before, most neurons are now either silent or active, see Fig. 6.3. In the
former case, after fading out the external Poisson sources, the network activity is not
strong enough to keep all neurons active. This is similar to what happens in Fig. 6.2
as the network is not able to restart on its own after hitting the zero-state. However,
if the connectivity is large enough, the network can also synchronize due to the strong
excitatory connections and fall into the one-state, i.e., almost all neurons start bursting.
It might be possible to avoid this behavior by improving the calibration quality. But since
this method of starting heavily relies on strong external Poisson input, this has not been
further investigated. Furthermore, even after improving the calibration, small variations
towards higher activities might still lead to a synchronization of the network due to the
strong excitatory interconnections. The parameters for the simulations discussed here
can be found in App. 8.2.

Moreover, setting rest potentials above threshold can also be implemented via an ex-

88

6.1 Deterministic Start of Networks

Figure 6.2: (top) Mean activity of a sea of BMs consisting of 10 10-neuron BMs after
starting the network without external noise, dependent on g = |ωi|

ωe
(note

the inverted axis) and the connectivity ε. Even for small values of g, the
network is able to start and remain stable. Different to the case of g > 1,
only a small fraction of neurons has its rest potentials set above threshold.
Consequently, the network starts in a low activity state, gradually exciting
more and more neurons until the target mean frequency is reached. However,
there exists a distinct transition to (g, ε)-values where the remaining self-
starting neurons are too few and too weak to stably start the rest of the
network. (bottom) Number of self-starting neurons for each configuration.
In cases where the network remains silent, only a small number of neurons
have their rest potential above threshold.

ternal current. It is therefore not surprising that at least sustained activity can be
guaranteed. But it is still interesting that a purely deterministic mechanism can be
employed to start the network – with stochasticity only arising from the spiking dynamics
of the BMs. Further, for g > 1 there is a notable similarity to the Poisson fade-out in
Chap. 5.2.1, where the network was also slowly placed into the correct activity state
starting from a high mean activity.
Finally, it should be added that the kind of self-sustained network presented here

is different from the ones investigated in Kumar et al. (2008); Kriener et al. (2014).
There, recurrent networks of COBA/CUBA neurons with strong inhibitory connections
and synaptic delays are used to put the network into a self-sustained asynchronous
irregular state. These networks do not have "pacemaker" neurons, which can spike

89

6 Stochastic LIF Networks Without External Noise

without external input. Thus, strong rises in activity can lead to a sudden death of the
network since the rest potentials are all set subthreshold.

0 1 2

simulation time [s]

0

20

40

60

80

100

ν̄ [Hz]

Figure 6.3: Same setup as in Fig. 6.2, but the sea of BMs is started with strong Poisson
input that is slowly faded out. (top left) Three distinct cases can be seen:
Stable network activity is observed for the same values of g = |ωi|

ωe
and ε as

in Fig. 6.2 (green-yellow area). However, decreasing g leads to less neurons
having their rest potentials above threshold until the remaining ones are
not strong enough to keep the entire network alive (blue area). By further
decreasing g, the excitatory connections become so strong that short rises
in activity kick the network in a trivial bursting state where the excitatory
input that each neuron observes is much stronger than initially assumed
during calibration (red area). (bottom left) Mean CVISI of the network. If
the network runs stably, the activity is irregular with CVISI values mostly
above 1 (light blue area). In the bursting state it is 0 as expected (dark blue
area). The CVISI cannot be calculated if the network does not spike at all,
marked in white. (right) Mean activity of the network during start-up. The
colors represent the three cases of stable activity (green), trivial bursting
(red) and network death (blue) after removing the external Poisson noise.

6.2 Removing Correlations by Training

In Chap. 5, it was shown that the sampling quality increases for larger and sparser
networks. However, this process becomes very tedious as we have to increase the network

90

6.2 Removing Correlations by Training

size over orders of magnitudes to achieve notable changes. Another approach is inspired
by recent work of I. Bytschok and M. Petrovici (personal communication), who showed
that shared-input correlations, which naturally occur if neurons of a single BM get noise
from a shared pool of Poisson sources, can be compensated by adjusting the Boltzmann
weights and biases accordingly. Finding the correct weights and biases can be done
by training, for instance with CD (see Chap. 2.4.2). In the following section, CD will
be utilized to drastically increase the sampling quality of LIF BMs without external
Poisson sources. The learning rate was set to

ηCD(s) =
400

s+ 2000
(6.1)

after conducted parameter sweeps, where s counts the number of training steps. It was
further observed that initial steps should be rather large to allow the training algorithm
to correct for strong correlations. Note that the noise interconnections remain unchanged
throughout the training. Detailed simulation parameters can be found in App. 8.2.

6.2.1 Special Case: Boltzmann Machines with Zero Weights

Since the quality of LIF sampling is mainly reduced due to network correlations, an
intuitive ansatz is to further train each BM on its target distribution. This way, the
distorted correlation structure between neurons of the same BM coming from shared
input and network-wide correlations will be corrected.
To check if this is really the case, a simple setup of 40 10-neuron Boltzmann ma-

chines without Poisson sources, all with internal weights set to 0, is used. With Poisson
background, these BMs would have no internal connections. But since in our setup
neurons have to share background sources, the synaptic weights in these BMs have to
be nonzero to compensate for their shared-input correlations. To this end, each BM was
first calibrated as in the previous chapter and used to sample for 105ms. The samples
were then used to update all BMs at once with the CD update scheme. In total, 1200
CD updates were performed.
In Fig. 6.4, the correlation coefficients between the states of 500 randomly selected

neuron pairs belonging to the same BM have been plotted in a histogram for every update
step. As we see, even after the first 100-200 update steps, the width of the correlation
distribution decreases substantially. After 1200 steps, the correlation coefficients are
actually distributed almost identically to the ideal Poissonian case. For Poisson sources,
the difference from zero correlation appears due to (i) the finite time over which the
correlation coefficients were calculated and (ii) the usage of sampled probabilities in
the calculation, which depend on the LIF sampling quality. The obtained correlation
coefficients for both cases range from around -0.02 to 0.02 and are therefore rather low
compared to the initial correlations in the untrained sea of BMs. This demonstrates that
CD can be used to further reduce harmful correlations without increasing the network
size.

91

6 Stochastic LIF Networks Without External Noise

0.2 0.0 0.2
correlation coefficient

0

20

40

distr.

ideal Poisson

before training

after training

Figure 6.4: Correlation of states of 500 randomly selected pairs of neurons. Each pair
consists of neurons belonging to the same BM. (top) The normalized dis-
tribution of correlation coefficients is shown for all training steps. Each
distribution is normalized on its maximum value. Already after a few hun-
dred training steps, the network correlations have been drastically reduced.
(bottom) Histogram of correlations before and after training. After 1200
training steps, the observed correlations are on the same order of magnitude
as in the ideal Poissonian case with correlation coefficients ranging from
around -0.02 to 0.02.

92

6.2 Removing Correlations by Training

6.2.2 General Case: Boltzmann Machines with Random Weights

After assuring that training indeed reduces unwanted correlations in the network, we can
use CD to improve the sampling quality of a general setup. For this, again a network of
40 10-neuron Boltzmann machines was used, but this time with finite weights randomly
drawn from Eq. 5.1a with W0 = 2.0. The number of inputs each neuron receives from
the network was set to 20, corresponding to a connectivity of around 5%.

If we compare the DKL curves before and after training with those of the BMs driven
by ideal Poisson noise before and after training, we can clearly see that the difference
between the sea of BMs and the ideal case shrinks drastically (see Fig. 6.5). Training
with Poisson noise also improves the sampling quality because the rules for translating
the theoretical Boltzmann parameters to LIF parameters are only approximations (see
Section 2.3.2). In this case, the samples for training were again obtained after 105ms.
However, it is possible to obtain results of similar quality for smaller sampling times, for
instance only 104ms, as demonstrated in App. 8.8.7. This decreases the total simulation
time needed for the whole training process.

10-2 10-1 100 101 102 103 104

simulation time [s]

10-3

10-2

10-1

100

101

102

DKL

untrained Poisson

untrained sea of BMs

trained Poisson

trained sea of BMs

Figure 6.5: Mean DKL of a network of 40 10-neuron BMs driven by Poisson noise only
(blue) and sea noise only (red) before (dashed) and after training with CD
(line). After training, both the sea of BMs and the Poisson-driven network
perform almost equally well. The sampling quality of the sea of BMs might
even be further improved by continuing the training. Also note that CD
improves the final mean DKL obtained from the sea of BMs over two orders
of magnitude. The shaded areas mark again the 15th and 85th percentile
over all single DKL curves.

Looking at the training results of randomly chosen weights and biases (see Fig. 6.6),
we can see that their evolution is very stable and smooth even though all BMs get

93

6 Stochastic LIF Networks Without External Noise

0 500 1000
training steps

1.5

1.0

0.5

0.0

0.5

1.0

1.5

weights

0 500 1000
training steps

0.8

1.0

1.2

1.4

weights

0 500 1000
training steps

1.0

0.5

0.0

0.5

1.0

1.5

biases

0 500 1000
training steps

1.2

1.0

0.8

0.6

0.4

biases

Figure 6.6: Randomly selected weights and biases during training from the sea of BMs
shown in Fig. 6.5. The plots on the right are enlarged versions of a small
region in the respective left plots. Both weights and biases evolve very
smoothly and are stable during training. Even though most weights have
already converged, some biases can still be optimized. This might further
improve the sampling quality of the sea of BMs.

updated simultaneously in each update step. This is not at all obvious, as updating all
BMs at the same time leads to slight changes in the background noise. However, these
seem to have a negligible influence on the training since all weights and biases converge
without irregularities, as for example jumps between successive training steps. Also note
that not all biases have converged yet, so further training might still improve the overall
LIF sampling quality.
This confirms that the intrinsic noise of a network of BMs can be used to replace

external Poisson sources without losing any significant amount of sampling quality in
terms of DKL. This result is not limited to networks with g = 4 and works equivalently
well for g < 1, as demonstrated in App. 8.8.8. This represents the second major result
of this work. While in the previous chapters we have shown how, in the thermodynamic
limit (N →∞), large ensembles of BMs can provide each other with uncorrelated noise
with virtually no external input needed, here we have shown that training allows very
practical implementations of these results, with the required N being as small as 40 –
or even lower, as we discuss in the following.

94

6.3 Towards Small and Fully Connected Networks

6.3 Towards Small and Fully Connected Networks

Training the sea of BMs with CD opens up the possibility to use small and fully connected
instead of large and sparse networks. This was not possible before, since network-wide
correlations rendered individual BMs useless and the only way to cope with this problem
was to make the network sparser by increasing the number of BMs. Additionally, CD lifts
the necessary restriction between sparseness and the desired minimal mean input each
neuron has to get from the sea to reach the high-conductance state. That’s because we
have now access to higher connectivities ε without negatively affecting the LIF sampling
quality of the network BMs. Thus, even for very small networks, for instance 4 BMs
with 10 neurons each, all neuron inputs can reach the desired noise frequency needed
for sampling by choosing a sufficiently large connectivity. This will be demonstrated in
the following sections for several exemplary cases.

6.3.1 Setup 1: 11 Boltzmann Machines with 3 Neurons Each

First, a simple setup consisting of 11 BMs with 3 neurons each was investigated. The
number of BMs chosen here is the minimal number at which stable network runs were
observed throughout the whole training (see Section 6.3.2 for details). The connectivity
was set to 93.33%, leading to an average input of 28 spike trains per neuron which equals
an average excitatory and inhibitory input frequency of 700Hz each.
The simulation was repeated for three different cases:

1. A general setup with g = 4.0, η = 0.5 and σW

µW
= 1.0 (shown in red in Fig. 6.7).

2. A purely inhibitory setup with η = 1.0 and σW

µW
= 1.0 (shown in green).

3. A setup with fixed inhibitory and excitatory weight strengths, i.e., η = 0.5 and
σW

µW
= 0.0 (shown in blue).

Before training, all three cases perform badly with final DKL values of around 10−1

to 100. The sampling quality of case 2. is especially bad, since due to the lack of mixing
between excitatory and inhibitory synapse types, neurons sharing the same input spikes
have very similar membrane traces and thus spike dynamics.
However, after training, case 1. and 3. perform very well with DKL values on the

order of 10−4. This is a drastic improvement of the sampling quality over three orders
of magnitude. Furthermore, not only is the sampling result very impressive, we have
to keep in mind that the noise provided to each neuron originates from 93.33% of the
whole network. Thus, every neuron sees approximately the same input spike trains. If all
noise synapses are inhibitory, this leads to poor sampling qualities as observed for case 2.
Also, training becomes very noisy and convergence towards ideal Boltzmann parameters
that compensate for network-wide correlations is not guaranteed (see Fig. 6.8). But still,

95

6 Stochastic LIF Networks Without External Noise

10-2 10-1 100 101 102 103

simulation time [s]

10-5

10-4

10-3

10-2

10-1

100

101

DKL

σW =0 untrained

η=1 untrained

general setup untrained

after training

000 001 010 011 100 101 110 111
states

10-2

10-1

100

Prob.

untrained Poisson

untrained network

trained network

theory

Figure 6.7: (top) Mean DKL of the sea of BMs before (dashed) and after (line) training
for different setups. Even though the network is very small, CD improves
the final mean DKL over three orders of magnitude. Changing the width
of the interconnection weight distribution σW does not notably change the
results (blue). However, taking away the randomness of synapse types, for
example by making all noise weights negative (green), seriously affects the
sampling quality after training. The general setup shown in red is defined
via µW = σW = 0.001µS and η = 0.5. (bottom) Illustration of the obtained
state distribution of a single network BM, taken from the general network
setup. Before training, the differences between theoretical and sampled state
probabilities can be large. But after training, the theoretical distribution is
very well approximated by the sea of BMs.

96

6.3 Towards Small and Fully Connected Networks

because the absolute weight values of the noise connections are chosen randomly, which
also weakens correlations, the training does improve the DKL to around 10−2.
In case 1. and 3., the initial overall correlation in the network is reduced by the

randomized noise synapse types. Hence, even though two neurons might get exactly
the same input spike trains, assigning each of the incoming spike trains with a random
synapse type will result in both neurons having different membrane traces. This mitigates
the correlations between neurons in the network and facilitates convergence towards an
appropriate set of theoretical Boltzmann parameters.

0 200 400 600 800 1000
training steps

1.5

1.0

0.5

0.0

0.5

1.0

weights

0 200 400 600 800 1000
training steps

1.5

1.0

0.5

0.0

0.5

1.0

weights

Figure 6.8: Randomly selected weights during training for the general case presented
in Fig. 6.7 with η = 0.5 (top) and η = 1.0 (bottom). If the noise synapse
types are fixed to only one type, the weight updates become very abrupt and
noisy. Furthermore, a lot of weights are not able to converge to a value much
different from the initial one. Thus, the strong initial correlations cannot be
compensated by training with CD. If we choose η = 0.5, initial correlations
are weaker in the network and CD is able to stably converge to a good
solution.

97

6 Stochastic LIF Networks Without External Noise

As a minimum requirement, it has been observed that, after calibration, the network
should at least be able to run stable in a non-trivial state, i.e., it should not fall into
the zero or one-state (all neurons silent or all neurons bursting). Otherwise the training
process is not guaranteed to converge to a good solution.

Finally, it should again be highlighted that two major properties of the interconnection
weight matrix are crucial for CD to converge properly. Firstly, as already discussed, the
synapse types of all interconnection weights have to be chosen randomly to weaken
shared-input correlations. Secondly, the weight matrix is not symmetric but asymmetric,
reducing the amount of direct feedback loops drastically. For instance, in App. 8.8.9
the 40 BM network of the previous section with 5% connectivity was implemented,
but with a symmetric interconnection weight matrix. Thus, the whole sea of BMs is
again a large BM and every neuron provides noise to neurons it gets noise from. This
makes training the network very hard since symmetric connections introduce strong
correlations between neurons of different BMs. Again, the weights change only slightly
during training and therefore, the final mean DKL of the network does not improve
considerably as well.

6.3.2 Setup 2: Small Networks with 10 Neurons Each

Applying the knowledge gained in the previous section, we can easily go to small networks
of larger BMs with 10 neurons each. Interestingly, we can even train a fully connected
network consisting of only two BMs. However, such small networks have a serious
drawback: They are susceptible to getting stuck in a subspace of the entire possible
state space. More precisely, it can happen that the network will at some point start
traversing almost deterministically through a small and closed portion of the entire
available states only. To get out of this subspace, an external random kick is needed,
which, however, is not available to the network.

This is demonstrated in Fig. 6.9, where the DKL of a single sampling run of the
network after 958 training steps is shown. First, the training obviously increased the
LIF sampling quality of the two BMs inside the network, even though the amount of
available noise sources is limited to the 10 neurons of the neighbouring BM. But after
running the network for around 30s, it gets stuck, immediately leading to an increase
in DKL as states in the subspace become overemphasized. This is also demonstrated
in Fig. 6.10, where the sampled state distributions are shown after sampling for 31s
and 100s. After 31s, the sampled distributions look similar to the desired theoretical
target distributions and capture their overall structure astonishingly well. However, after
100s, the sampled distributions are reduced to a few peaks, showing that both BMs
started traversing through a small and fixed number of states only. During training,
this has no significant influence on the weight and bias updates. But it often happens
while sampling for the pairwise and marginal probabilities that the network gets stuck,
leading to a spontaneous drop in DKL. This is shown in Fig. 6.11 and can be used as
an easy way to identify unstable network configurations during training.

98

6.3 Towards Small and Fully Connected Networks

10-2 10-1 100 101 102

simulation time [s]

10-1

100

101

DKL

untrained network

trained network

Figure 6.9: Network consisting of 2 BMs with 10 neurons each sampling before training
(dashed) and after 958 training steps (line). CD does indeed improve the
sampling quality for this minimalistic network. However, due to the limited
size and therefore lack of randomness, the network can get stuck in a small
subspace of states, which leads to an immediate increase of DKL.

We can get rid of this effect by increasing the number of BMs in the sea. This way,
we will have more noise sources available and the chance of getting stuck in a certain
subspace of states is reduced. Already for 4 BMs with 10 neurons each, the network
remains stable throughout the whole training process. Note that - even though the
final DKL reached with this setup is worse compared to the ideal Poissonian one of
around 10−3 shown in Fig. 6.5 - it improves over two orders of magnitude from 100

before training to 10−2 after training (see Fig. 6.12). Furthermore, as can be seen in
Fig. 6.13, all four sampled distributions capture the important features of their target
distributions very well.

Again, this demonstrates that using CD opens up the possibility for small and strongly
connected networks of BMs which can operate reliably without any external noise. But
still, the size of the network can have a large influence on the LIF sampling performance,
as for example very small networks can get stuck in certain states due to a lack of
randomness.
Nevertheless, it is rather surprising that LIF sampling can be realized without any

external Poisson sources, even for small and non-sparsely connected networks. Thus, it
is indeed possible to implement a network of well-performing BMs without having to
utilize any external noise inputs.

99

6 Stochastic LIF Networks Without External Noise

0.00

0.02

0.04

0.06

sampled distr.
 after 31.00 s
 DKL: 0.125

0.0

0.1

0.2

0.3

sampled distr.
 after 100.00 s

 DKL: 2.403

0 256 512 768 1024
0.00

0.02

0.04

0.06

theor. distr.

0 256 512 768 1024

states

Figure 6.10: State distribution of the 210 possible states of the two BMs. After sampling
for 31s (top), the overall structure of the sampled distributions agrees
remarkably well with the theoretical one (bottom). Note that no external
noise sources are used and every neuron gets its noise from the 10 neurons
of the neighbouring BM. Due to the network being so small, the neurons
can get stuck and start traversing only through a small subspace of states.
This can be seen very well after sampling for 100s (middle) as only a very
small number of states is highly emphasized in the sampled distribution.

100

6.3 Towards Small and Fully Connected Networks

0 200 400 600 800 1000
training steps

10-2

10-1

100

101

DKL

after 105 ms

20 neurons

30 neurons

40 neurons

Figure 6.11: Final mean DKL obtained during training for a network of 2 BMs (blue),
3 BMs (magenta) and 4 BMs (red). The already mentioned instability of
the network getting stuck also appears during training and leads to spikes
in the DKL curve. For 3 BMs, this effect is highly reduced but can still
appear. Increasing the number of BMs to 4 eventually leads to completely
stable network runs during training. The red shaded area marks the interval
between the 15th and 85th percentile. The errors for 20 and 30 neurons are
rather small and have been excluded to guarantee readability.

10-2 10-1 100 101 102 103

simulation time [s]

10-3

10-2

10-1

100

101

DKL

untrained sea of BMs

trained sea of BMs

untrained Poisson - final DKL

trained Poisson - final DKL

Figure 6.12: Sampling quality of a 4 10-neuron BM network (dashed) before and (line)
after training with CD. Even though the network is small and fully con-
nected, the sampling quality can be improved over two orders of magnitude
via training. This shows that the initial distorting correlations coming from
the network interconnections can be compensated with CD even in case
of small networks. However, the final DKL is worse than for sampling with
Poisson sources post-training.

101

6 Stochastic LIF Networks Without External Noise

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

sa
m

p
le

d
 d

istr.
 a

fte
r 1

0
0
0
.0

0
 s

 D
K

L : 0
.0

2
7

0
2
5
6

5
1
2

7
6
8

1
0
2
4

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

th
e
o
r. d

istr.

0
2
5
6

5
1
2

7
6
8

1
0
2
4

0
2
5
6

5
1
2

7
6
8

1
0
2
4

0
2
5
6

5
1
2

7
6
8

1
0
2
4

sta
te

s

F
igure

6.13:C
om

parison
ofthe

sam
pled

distribution
after

1000s
and

the
underlying

theoreticalB
oltzm

ann
distribution

for
a
netw

ork
of4

10-neuron
B
M
s.A

s
w
e
can

see,the
sea

ofB
M
s
captures

the
structure

ofthe
theoretical

distributions
very

w
ell.

A
gain,note

that
no

externalnoise
sources

w
ere

used
here

and
stochasticity

w
as

only
provided

by
the

B
M
s
them

selves.

102

7 Summary and Outlook

Throughout this thesis, we gradually developed and evaluated a framework to eliminate
external Poisson input for LIF sampling. In the end, we succeeded in completely cutting
off all external stimuli and demonstrated that even small networks of Boltzmann
machines can exploit the ongoing network activity as an intrinsic noise source.

In the first two chapters, the focus was set on the question of whether spike trains
originating from a pool of Boltzmann machines can be utilized as a replacement for
Poisson sources. To find an answer, instead of running a single Boltzmann machine
with Poisson spikes, we used spike trains coming from an adequately sized pool of
Boltzmann machines. As opposed to a Poisson source, the spike train generated by
a Leaky Integrate-and-Fire neuron is colored instead of white, i.e., they have a short-
time correlation structure due to consecutive spikes having a minimal distance of a
single refractory period. Furthermore, since neurons of the same Boltzmann machine are
connected via synaptic weights, additional cross-correlations between noise spike trains
connected to different neurons are introduced, leading to a distortion of the distribution
sampled from.
However, not only did it turn out that the coloring of the noise is completely

unproblematic for the sampling quality, it was also demonstrated that undesired cross-
correlations can be mitigated by increasing the number of noise inputs per neuron and
choosing the synapse type of each connected noise spike train randomly.

These results allowed us to go one step further. Instead of looking at a single, com-
pletely isolated Boltzmann machine, we chose an open systems approach and embedded
the Boltzmann machine into a sea of Boltzmann machines. This is analogous to the
introduction of the canonical ensemble in statistical physics, which places a previously
isolated physical system into contact with a so-called heat bath with fixed temperature
T , commonly reflecting the environment. By interacting with this heat bath, the system
can undergo state changes induced by thermal fluctuations on an energy scale of the
order kBT , where kB denotes the Boltzmann constant.

In our case, Boltzmann machines that were previously treated as completely isolated
entities are embedded into a network of Boltzmann machines. Here, the network
itself acts as the natural environment or heat bath, and simply by allowing each
Boltzmann machine to interact with this environment, as in the case of the canoni-
cal ensemble in statistical physics, stochastic behavior arises in a completely natural way.

103

7 Summary and Outlook

This way, we end up at an interesting duality: Spike times acting as carriers of function
and information, but also as noise input for other Boltzmann machines in the network,
providing the necessary stochasticity to guarantee functionality in the first place. To our
knowledge, this is the first implementation of small, functional neural networks which
operate without external idealized Poisson sources, but use the background activity of
the surrounding neural networks to enable stochastic computations.
At this point, it should be noted that the sea of Boltzmann machines is actually a

completely deterministic system. Every network start with identical initial conditions
will result in the same sequence of spikes and states. Stochastic behavior arises due to
small changes in the sea having a large impact on the network dynamics and hence
on future network states. Therefore, the sea of Boltzmann machines is a deterministic
chaotic system and can be compared with a deterministic pseudorandom number
generator, like the ones used in software simulations to generate Poisson noise, instead
of a source of true randomness.

Finally, the LIF sampling theory is the centerpiece of all results presented through-
out this thesis. First, it allows us to use spike-based neural networks to sample from
binary Boltzmann distributions, giving each spike time a concrete, functional purpose.
Furthermore, neurons are pushed into a stochastic regime of operation by bombarding
them with Poisson spikes. Coming from biology, it is completely natural to replace this
artificial bombardment with spikes from a large pool of functional networks.

It also paves the way to the implementation of Leaky Integrate-and-Fire Boltzmann
machines which can then be trained with contrastive divergence, enabling us to realize
small and non-sparsely connected networks of Boltzmann machines that run stably
and sample from their respective target distributions without any external noise sources.

Starting from these results, we are now able to tackle several interesting issues:

• A sea of large-scale, multifunctional networks:
One natural progression is towards larger (restricted) Boltzmann machines that
are not set to sample from predefined theoretical distributions anymore, but are
trained on small real world problems, as for instance image classification. This
allows us to study the impact on functionality due to unforeseen changes or
deficiencies in the background activity. Moreover, biologically inspired plasticity
rules might be used to allow the sea of Boltzmann machines to adjust to such
defects and preserve functionality.

• Inducing a change in function by changing the background activity:
Related to the previous point is the following idea: Might a sudden change in the
background activity, for instance because some neurons of one or two Boltzmann
machines were clamped, induce a useful functional change or ’association’ in some
of the remaining network Boltzmann machines? This would further reduce the

104

artificial distinction between noise and information in the network, since noise
connections can induce functional changes as well.

• Getting rid of calibrations:
Up until now, every neuron had to be calibrated at least on some approximation of
the network noise it will see during sampling. For large networks, it is unrealistic to
first run every Boltzmann machine with Poisson noise to get these approximations.
However, it may be the case that these calibrations do not need to be accurate
for learning to converge. Thus, a generic activation function might be used for all
neurons in the ensemble.

• A sea of Boltzmann machines on HICANN:
After improving the calibration scheme, it is theoretically possible to start small-
scale experiments with the sea of Boltzmann machines on HICANN. Even
though Kungl (2016) demonstrated that LIF sampling is in principle possible
on HICANNv4, the external bandwidth is not high enough to increase the number
of neurons to values significantly larger than two. Since the sea of Boltzmann
machines is completely independent of any external noise input, it directly enables
hardware implementations of larger LIF-based Boltzmann machine ensembles.

• Adding plasticity to noise connections:
In this thesis, the network interconnections providing intrinsic noise were imple-
mented as static synapses. However, adding short-term plasticity to these synapses
or including them into the training process, for example by adding Spike Timing
Dependent Plasticity, might help in the aforementioned issues. Moreover, this would
again reduce the artificially introduced distinction between synapses connecting
neurons of the same and synapses connecting neurons of different Boltzmann
machines.

• A sea of Boltzmann machines as a Boltzmann machine:
Preliminary simulations have shown that it is much harder to train a sea of
Boltzmann machines with symmetric weights than with asymmetric ones. In fact,
up until now, only the asymmetric case was successfully trained with contrastive
divergence. However, it should be further investigated if changes in the training
algorithm might improve sampling results for the symmetric case as well.

To summarize, it was successfully demonstrated that LIF-based Boltzmann machines
can be used as noise sources for functional networks, in our case again Boltzmann
machines, replacing commonly used idealized Poisson sources. Moreover, Boltzmann
machines can be interconnected to large networks that utilize intrinsic network spikes
as background noise, eliminating any external Poisson sources. This opens up many
interesting possibilities for further studies with networks that function without any
external stimuli.

105

8 Appendix

8.1 Acronyms

AI Asynchronous Irregular

BM Boltzmann Machine

CD Contrastive Divergence

COBA Conductance-Based

CUBA Current-Based

CV Coefficient of Variation

DKL Kullback-Leibler Divergence

HICANN High Input Count Analog Neural Network

ISI Interspike Interval

LIF Leaky Integrate-and-Fire

MNIST Mixed National Institute of Standards and Technology

NEST Neural Simulation Tool

ODE Ordinary Differential Equation

OU Ornstein-Uhlenbeck

PSP Post-Synaptic Potential

SBS Spike-Based Sampling

SLURM Simple Linux Utility Resource Management

STP Short-Term Plasticity

TSO Tsodyks-Markram Model

107

8 Appendix

8.2 Parameters

The integration time step used for simulations was initially set to dt = 0.01ms, however
it turned out that the quality of the results is not impaired by choosing dt = 0.1ms,
which leads to an immense speedup. In most DKL plots, uncertainties are shown as
percentiles instead of standard deviations to avoid values below 0 on the logarithmic
scale.
The neuron parameters used in various simulations and some specific simulation

setups are given in the following tables.

Table 8.1: COBA LIF neuron parameters used throughout Chap. 3 to 5.1.

cm 0.2 nF membrane capacitance
τm 0.1 ms membrane time constant
Ee

rev 0.0 mV exc. reversal potential
Ei

rev -100.0 mV inh. reversal potential
uthresh -50.0 mV threshold potential
τ e

syn 10.0 ms exc. synaptic time constant
urest -50.0 mV rest/leak potential
τ i

syn 10.0 ms inh. synaptic time constant
ureset -50.01 mV reset potential
τrefrac 10.0 ms refractory time
Ioffset 0.0 nA offset current
winh/exc 0.001 µS Poisson noise weights

Table 8.2: Theoretical Boltzmann parameters used for the network Boltzmann machines
generating the noise spike trains in Chap. 3. The mean frequency of the
neurons were changed by increasing the bias. Note that for very low activities,
a lot of Boltzmann machines (#BMs = number of BMs used) are needed for
each network to achieve the desired frequency of at least 600Hz.

bias b ν̄ [τ−1
ref] #BMs

-4.0 (1.42± 0.03)% 330
-2.0 (14.14± 0.15)% 50
0.0 (52.95± 0.26)% 12
2.0 (89.08± 0.10)% 6
5.0 (99.97± 0.01)% 6
W12 -0.36
W13 0.59
W23 0.22

108

8.2 Parameters

Table 8.3: COBA LIF neuron parameters used throughout Chap. 5.2 to 6.

cm 0.2 nF membrane capacitance
τm 1.0 ms membrane time constant
Ee

rev 0.0 mV exc. reversal potential
Ei

rev -100.0 mV inh. reversal potential
uthresh -50.0 mV threshold potential
τ e

syn 10.0 ms exc. synaptic time constant
urest -50.0 mV rest/leak potential
τ i

syn 10.0 ms inh. synaptic time constant
ureset -50.1 mV reset potential
τrefrac 10.0 ms refractory time
Ioffset 0.0 nA offset current
winh/exc 0.001 µS Poisson noise weights

Table 8.4: Simulation parameters used in Chap. 6.1.

#BMs 10
#neurons per BM 10

η 0.5
µW 0.001 µS
σW 0.001 µS

weight distr. 2.0 ·
(
beta(0.5, 0.5)− 0.5

)
bias distr. 1.2 ·

(
beta(0.5, 0.5)− 0.5

)
sampling time 104ms

109

8 Appendix

Table 8.5: Simulation parameters used in Chap. 6.2. The sampling time is used while
calculating the update steps. No Poisson sources are used.

#BMs 40
#neurons per BM 10

g 4.0
ε 5.13%
η 0.5
µW 0.001 µS
σW 0.001 µS

weight distr. 0.0 or 2.0 ·
(
beta(0.5, 0.5)− 0.5

)
bias distr. 1.2 ·

(
beta(0.5, 0.5)− 0.5

)
calibration time 105ms
sampling time 105ms
training steps 1200

Table 8.6: Simulation parameters used in Chap. 6.3.1. The sampling time is used while
calculating the update steps. No Poisson sources are used.

#BMs 11
#neurons per BM 3

g 4.0
ε 93.33%
µW 0.001 µS

weight distr. 2.0 ·
(
beta(0.5, 0.5)− 0.5

)
bias distr. 1.2 ·

(
beta(0.5, 0.5)− 0.5

)
calibration time 105ms
sampling time 105ms
training steps 1000

110

8.3 Simulation Software

Table 8.7: Simulation parameters used in Chap. 6.3.2. The sampling time is used while
calculating the update steps. No Poisson sources are used.

#BMs 2, 3, 4
#neurons per BM 10

g 4.0
ε 100%
µW 0.001 µS
σW 0.001 µS

weight distr. 2.0 ·
(
beta(0.5, 0.5)− 0.5

)
bias distr. 1.2 ·

(
beta(0.5, 0.5)− 0.5

)
calibration time 105ms
sampling time 105ms
training steps 1000

8.3 Simulation Software

All simulations have been done in the programming language Python 2.7.3 (Van Rossum
and Drake Jr , 1995). The implementation and numerical computation of neuron models,
synapse types and noise sources were done with NEST 2.4.2 (Gewaltig and Diesmann,
2007), which is an abbreviation for Neural Simulation Tool. NEST is a simulator for
spiking neural networks and provides a multitude of neuron models and synapse types
for large scale simulations. It can be accessed in Python via the pyNEST interface.

Instead of using NEST directly, PyNN 0.8 (Davison et al., 2009), pronounced pine, a
Python module which implements a simulator-independent language for building and
connecting populations of neurons has been utilized.
Furthermore, the Python module SBS 1.3.2 (Breitwieser , 2015), called Spike-Based

Sampling, allowed effortless realizations of LIF Boltzmann Machines by providing meth-
ods for calibrating neurons and translating theoretical Boltzmann parameters to net-
works of LIF neurons with PyNN and NEST.

Throughout this thesis, SBS and PyNN were mainly supplemented with code written
by myself to attain the desired network setups and evaluate simulation runs accordingly.
Also, in some cases, SBS code has either been modified or newly implemented as separate
functions.

Finally, SLURM (Simple Linux Utility Resource Management, Yoo et al. (2003)) was
used to distribute and manage independent jobs on the group internal computer cluster
in a straightforward way.

111

8 Appendix

8.4 HICANN Wafer System

The HICANN wafer system is currently under development as part of the Human Brain
Project (HBP), a so-called FET Flagship (European Commission Future and Emerging
Technologies Flagship). The goal of the HICANN wafer system is to provide a general-
purpose emulation platform for biologically inspired neural networks. This opens up
the possibility to develop and implement novel computational methods beyond the
commonly used von Neumann architecture.
A single wafer contains 384 HICANN chips, all made up of two symmetric halves

containing both neuron circuits and a large synapse array occupying most of the space on-
chip (see Fig. 8.1). In total, a single chip holds 2x256 neuron circuits, so-called dendritic
membranes (DenMems), grouped into 8 blocks of 64 DenMems that can either be
short-circuited or combined to form larger neurons or multi-compartment models. Each
circuit implements the Adaptive Exponential Integrate-and-Fire neuron model (Brette
and Gerstner , 2005) with conductance-based synapses. The synapse arrays are made up
of 224 rows and 256 columns each and are used to route synaptic input transmitted via
2x128 vertical buses to the neuron circuits. The synaptic weights have either a resolution
of 4 bits or, by combining two neighbouring synapse drivers, a maximum resolution of
8 bits. Note that due to the high integration density of analog neurons and synapses on
the chip, all components are sped up by a factor of 104 compared to biology.

If a neuron spikes, a time-stamped digital spike pulse package with the corresponding
6 bit neuron address gets fed into one of the 64 horizontal buses and can then be routed
towards another neuron via the vertical buses. This transport of action potentials with
horizontal and vertical buses spanning over the whole wafer is called layer 1 (L1) commu-
nication. The L1 architecture cannot be directly connected to an external component,
for example a host PC or other wafers. Therefore, each HICANN has a layer 2 (L2)
interface with the same bandwidth as a single L1 bus. This L2 interface can be fed with
up to eight L1 buses and gets connected to the host PC via a hierarchical packet-based
network (Millner , 2012). This obviously limits the available bandwidth for external
spike inputs. The high acceleration factor further reduces the amount of external input
that can be provided, since noise frequencies are coupled to the intrinsic time scale of
the on-chip neurons. Every HICANN is further equipped with its own noise generators,
so-called linear-feedback shift registers, but due to the limited space available on chips,
the number of shift registers per HICANN was restricted to eight only.

Note that the bandwidth limitation ultimately results from hard physical constraints,
because the information flux into every physical device is strictly limited by its sur-
rounding surface area and the transmission speed of the incoming signal. Therefore, it
is an inherent property of such systems and does not only apply to the HICANN chip.

112

8.4 HICANN Wafer System

F
ig
ur
e
8.
1:

Sc
he
m
at
ic
s
of

th
e
H
IC

A
N
N

w
af
er

sy
st
em

.(
le

ft
)
A

si
ng

le
w
af
er

co
ns
is
ts

of
48

re
ti
cl
es

w
it
h
8
H
IC

A
N
N

ch
ip
s

ea
ch
.T

he
si
ze

of
th
e
re
ti
cl
es

is
lim

it
ed

by
th
e
m
ax

im
um

su
rf
ac
e
th
at

ca
n
be

ill
um

in
at
ed

at
on

ce
du

ri
ng

th
e

m
an

uf
ac
tu
ri
ng

pr
oc
es
s.
E
ve
ry

H
IC

A
N
N

co
ns
is
ts

of
tw

o
sy
m
m
et
ri
c
ha

lv
es

ho
ld
in
g
sy
na

ps
e
ar
ra
ys

an
d
ne
ur
on

ci
rc
ui
ts
.O

n-
ch
ip

as
w
el
la

s
w
af
er
-w

id
e
co
m
m
un

ic
at
io
n
be

tw
ee
n
ne
ur
on

s
is
im

pl
em

en
te
d
vi
a
ho

ri
zo
nt
al

(b
lu
e)

an
d
ve
rt
ic
al

(r
ed
)
bu

se
s
st
re
tc
hi
ng

al
lo

ve
r
th
e
w
af
er
.T

he
ye
llo

w
ar
ro
w
s
sh
ow

ex
em

pl
ar
y
ro
ut
es

of
sp
ik
es
.

O
ff-
w
af
er

co
m
m
un

ic
at
io
n
us
es

an
ad

di
ti
on

al
in
te
rf
ac
e
th
at

co
nn

ec
ts

th
e
w
af
er

vi
a
a
hi
er
ar
ch
ic
al

pa
ck
et
-b
as
ed

ne
tw

or
k,

fo
ur

D
ig
it
al

N
et
w
or
k
C
hi
ps

(D
N
C
)
an

d
on

e
F
ie
ld
-P

ro
gr
am

m
ab

le
G
at
e
A
rr
ay

(F
P
G
A
),
to

a
ho

st
P
C
.(

ri
gh

t)
Sc
he
m
at
ic

of
th
e
up

pe
r
ha

lf
of

a
si
ng

le
H
IC

A
N
N

ch
ip
.I
fa

ne
ur
on

sp
ik
es
,a

6
bi
t
di
gi
ta
ls

ig
na

l
ho

ld
in
g
th
e
ne
ur
on

’s
ad

dr
es
s
is

in
je
ct
ed

in
to

th
e
ho

ri
zo
nt
al

bu
s.

R
ou

ti
ng

pa
th
s
ca
n
be

st
at
ic
al
ly

se
t
w
it
h

cr
os
sb
ar

an
d
sy
na

ps
e
dr
iv
er

sw
it
ch
es
.
In

th
e
sy
na

ps
e
ar
ra
y,

in
go

in
g
di
gi
ta
l
si
gn

al
s
ar
e
tr
an

sl
at
ed

in
to

a
po

st
sy
na

pt
ic

co
nd

uc
ta
nc
e
an

d
tr
an

sm
it
te
d
to

th
e
ne
ur
on

ci
rc
ui
t
if
th
e
6
bi
t
ad

dr
es
s
of

th
e
in
go

in
g
si
gn

al
m
at
ch
es

th
e
on

e
pr
ev
io
us
ly

se
t
in

th
e
sy
na

ps
e.

Im
ag

es
ta
ke
n
fr
om

P
et
ro
vi
ci

(2
01

6)
.

113

8 Appendix

8.5 Illustration of the Beta Distribution

The beta distribution is defined on the bounded interval x ∈ [0, 1] as

beta(α, β) =
1

B(α, β)
xα−1(1− x)β−1 (8.1)

with the normalization constant B(α, β) =
∫ 1

0
xα−1(1 − x)β−1 dx. The parameters α

and β determine the shape of the distribution. Note that having a bounded set of values
for x is very desirable if we want to draw random synaptic weights, as for instance a
Gaussian distribution would allow problematically huge weights with a low but non-zero
probability. The shapes of the beta distributions used throughout this thesis are shown
in Fig. 8.2.

0.0 0.5 1.0
values

0

2

4

6

8

distr.

α=0.5, β=0.5

0.0 0.5 1.0
values

0

1

2

3

distr.

α=4.0, β=4.0

0.0 0.5 1.0
values

0

10

20

30

distr.

α=0.5, β=5.0

0.0 0.5 1.0
values

0

10

20

30

distr.

α=5.0, β=0.5

Figure 8.2: Demonstration of the typical beta distributions used throughout this thesis.
The shape of the distribution can be adjusted by changing α and β. (top) If
α and β are equal, the distribution is symmetric. The mass of the probability
distribution can be shifted to the boundaries for parameters < 1 (left) and
to the center for parameters > 1 (right). Note that for α = β = 1, we obtain
a uniform distribution on the interval [0, 1]. (bottom) If α and β have
different values, the distribution becomes skewed.

114

8.6 Illustration of the Interconnection Weight Distribution

8.6 Illustration of the Interconnection Weight
Distribution

The distribution introduced in Chap. 5 that generates the noise interconnections between
network BMs is demonstrated in Fig. 8.3 for several parameter sets.

2 1 0 1 2
weights [nS]

0.0

0.2

0.4

0.6

distr.

µW =1.0 nS, σW =1.0 nS, g=1.0, η=0.5

2 1 0 1 2
weights [nS]

0.0

0.5

1.0

1.5

distr.

µW =1.0 nS, σW =0.5 nS, g=1.0, η=0.5

2 1 0 1
weights [nS]

0

1

2

3

distr.

µW =1.0 nS, σW =1.0 nS, g=4.0, η=0.5

2 1 0 1 2
weights [nS]

0.0

0.5

1.0

1.5

distr.

µW =1.0 nS, σW =1.0 nS, g=1.0, η=0.05

Figure 8.3: Some examples of how the interconnection weight distribution can be ad-
justed by changing the mean-to-width ratio, g and η. (top left) Standard
weight distribution used in this thesis which yields symmetric interconnec-
tions. (top right) By increasing the mean-to-width ratio, the distribution
gets centered narrower around ±µW. (bottom left) Adjusting g leads to a
rescaling of the relative strength of inhibitory and excitatory weights. The
distribution has been chosen such that changing g leaves the mean-to-width
ratio constant. (bottom right) η can be used to set the relative abundance
of excitatory and inhibitory synaptic connections in the network.

115

8 Appendix

8.7 Proof for the Free Membrane Potential
Autocorrelation Function

We can prove Eq. 3.6 by using the Wiener-Khintchine theorem (W), see Eq. 3.3, and
the well-known convolution theorem (C), which states that convolutions in real space
are equal to point-wise multiplications in Fourier space and vice versa, i.e.,

F(a ∗ b) = F(a) · F(b) , (8.2a)
F(a · b) = F(a) ∗ F(b) , (8.2b)

where Fourier transforms are denoted by F and convolutions by ∗. a and b are, in this
case, arbitrary functions. In the following, the autocorrelation function of a function f is
denoted by ρf . If the neuron is fed with a spike train η, the trace of the free membrane
potential can be obtained by convolving η with the PSP shape κ, i.e., u = η ∗ κ. With
this, the autocorrelation function can be calculated as follows:

ρu(∆)
W
= F−1

(
F(u)F∗(u)

)
(∆) (8.3a)

C
= F−1

(
F(η)F(κ)F∗(η)F∗(κ)

)
(∆) (8.3b)

C
=
[
F−1

(
F(η)F∗(η)

)
∗ F−1

(
F(κ)F∗(κ)

)]
(∆) (8.3c)

W
= [ρη ∗ ρκ](∆) . (8.3d)

In case of a COBA LIF neuron which is in the high-conductance state, we obtain Eq.
3.6 because the PSP shape κ can be approximated by an exponential decay with time
constant τsyn.

116

8.8 Additional Results

8.8 Additional Results

8.8.1 Sampling Quality Dependence on the Calibration Time

For the following simulation results, the weights and biases of the target distributions
were drawn from beta distributions:

W ∝ 1.2 ·
(
beta(0.5, 0.5)− 0.5

)
, (8.4a)

b ∝ 1.2 ·
(
beta(0.5, 0.5)− 0.5

)
. (8.4b)

In total, the generated noise was used to sample from 24 different Boltzmann distribu-
tions with 3 neurons. To take the changing quality of the generated noise into account,
the experiment was repeated 10 times. Thus, in total, noise from BMs was generated
10 times and each of these were used to sample from 24 Boltzmann distributions. The
results are shown in Fig. 8.4.

8.8.2 k-th Neighbour Interval Distribution for Very Large
Networks

k = 2

network
poisson

k = 7

0 0.5 1 1.5
kth-spike distance [τref]

k = 18

Figure 8.5: k-th neighbour interval distribution for a noise-generating network consisting
of 20 Boltzmann machines. Even though for small k there are only minor
differences, as soon as the distribution is shifted towards τref , the interval
distribution becomes distorted again. The mean frequency of the neurons
generating the noise is ν̄ = 0.9997 τ−1

ref .

117

8 Appendix

10
1

10
2

10
3

10
4

10
5

10
6

sim
ulation

tim
e

[m
s]

10
−
4

10
−
3

10
−
2

10
−
1

10
0

10
1

D
K

L

Tcal =
5
·10

5ms
Tcal =

1
·10

5ms
Tcal =

5
·10

4ms
Tcal =

1
·10

4ms

10
1

10
2

10
3

10
4

10
5

10
6

sim
ulation

tim
e

[m
s]

10
−
4

10
−
3

10
−
2

10
−
1

10
0

10
1

D
K

L

Tcal =
5
·10

5ms
Tcal =

1
·10

5ms
Tcal =

5
·10

4ms
Tcal =

1
·10

4ms

10
1

10
2

10
3

10
4

10
5

10
6

sim
ulation

tim
e

[m
s]

10
−
3

10
−
2

10
−
1

10
0

10
1

D
K

L

Tcal =
5
·10

5ms
Tcal =

1
·10

5ms
Tcal =

5
·10

4ms
Tcal =

1
·10

4ms

F
igure

8.4:K
ullback-Leibler

divergence
for

sam
pling

w
ith

noise
com

ing
from

B
oltzm

ann
m
achines.T

he
noise-generating

neurons
have

an
activity

of(top
left)

ν̄
=

0.14
τ
−

1
ref ,(top

right)
ν̄

=
0.89

τ
−

1
ref

and
(bottom

)
ν̄

=
0.9997

τ
−

1
ref .

T
he

thick
lines

represent
the

m
ean

and
the

dotted
lines

the
15th

and
85th

percentile
ofallm

easurem
ents.

F
irst,for

low
activities,the

calibration
tim

e
has

no
significant

effect
on

the
sam

pling
quality,as

can
be

seen
in

the
top

left
figure.H

ow
ever,if

the
noise

is
generated

by
neurons

w
ith

high
activity,i.e.,neurons

w
hich

spike
close

to
their

m
axim

um
frequency

τ
−

1
ref ,calibrating

longer
im

proves
the

sam
pling

results
trem

endously.
A
lso

note
the

plateau
in

the
bottom

plot,dem
onstrating

that
sam

pling
w
ith

very
strong

autocorrelations
in

the
noise

indeed
slow

s
dow

n
the

effective
sam

pling
speed

as
uncorrelated

random
kicks

only
appear

on
large

tim
e
scales�

τ
sy

n .

118

8.8 Additional Results

8.8.3 Sampling Quality with Bursting Noise Neurons

101 102 103 104 105 106

simulation time [ms]

10−4

10−3

10−2

10−1

100

101

DKL

p̄s = (89.08± 0.10)%

p̄s = (98.48± 0.05)%

p̄s = (99.97± 0.01)%

Poisson

Figure 8.6: LIF sampling quality for a 3-neuron BM fed with noise coming from very
active neurons. As can be seen, even for noise neurons with mean rates up
to around ν̄ = 0.9 τ−1

ref , DKL values similar to those obtained from ideal LIF
sampling with Poisson sources are reached. Hence, LIF sampling works over
a large range of biases in the noise BMs.

8.8.4 Autocorrelation of Noise from Randomized Boltzmann
Machines

0 2 4 6 8 10

time lag ∆ [τref]

0.0

0.2

0.4

0.6

0.8

1.0

ρa(∆)

0 2 4 6 8 10

time lag ∆ [τref]

0.0

0.2

0.4

0.6

0.8

1.0

ρa(∆)

Figure 8.7: Autocorrelation function of spike trains generated by neurons with different
weight scale factor W noise

0 . (left) W noise
0 = 0.6 and (right) W noise

0 = 2.4. Both
cases are rather similar. Therefore, the influence of the weight scale factor
on the autocorrelation of the generated noise spike trains is only marginal.
Further, note that the strength of the autocorrelations is very similar to
those obtained for neurons with intermediate activity, e.g. ν̄ = 0.53 τ−1

ref ,
meaning that we are not in the limit of extreme bursting.

119

8 Appendix

8.8.5 Comparison of the Two Calibration Schemes

To compare the iterative and non-iterative calibration scheme presented in Chap. 5,
a fully connected network of 10 BMs which consist of 3 neurons each was used. The
minimum step width of the interconnections was set to ωp

10
. The mean-to-width ratio for

the noise weight distribution and the noise weight strength ratio g were both set to 1.
Furthermore, the weights and biases of the target Boltzmann distributions were drawn
from the beta distributions given in Eq. 5.1a and 5.1b with W0 = 1.2.

0 1 2 3
maximum weight [ωP]

10-3

10-2

10-1

100

DKL

after 106 ms

iterative

non-iterative

Figure 8.8: Comparison of the iterative (red) and non-iterative or greedy (blue) scheme
for different interconnection weights given as multiples of the Poisson weights
ωp. The drawn lines represent the average DKL over five network realizations
with different random seeds. The shaded area gives the 15th and 85th per-
centile over the DKL values of all BMs. For the greedy calibration scheme,
the final DKL values smoothly increase with growing intrinsic connections.
However, for the iterative scheme, a sudden rise to very bad DKL values
occurs between 2ωp and 3ωp. Before this sudden rise in DKL, both schemes
perform equally well.

120

8.8 Additional Results

2.0 2.5 3.0
maximum weight [ωp]

0.0

0.2

0.4

0.6

0.8

1.0

mean
 frequency

[τ−1
ref]

Figure 8.9: Mean frequency of 15 network neurons from a single simulation run using the
iterative calibration scheme. For large weights, subsets of neurons start to
oscillate between different firing states, e.g. bursting or remaining completely
inactive. The oscillating behavior is a direct consequence from taking the
spike trains of the previous iteration step for the calibration of the current
iteration step.

50.5 50.0
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

Figure 8.10: Calibration function of a single neuron after all iteration steps. The red line
is the activation function obtained from the spike trains of the previous
iteration step. The blue curve shows the actually observed activation func-
tion while running the network. The dashed lines mark the rest potential at
which the probability to be refractory is 0.5. The used calibration function
is much farther to the left than the actually observed activity, leading to
a very low activity of the neuron even for high biases due to the wrong
translation of the theoretical parameters.

121

8 Appendix

2.0 2.5 3.0
maximum weight [ωp]

0.0

0.2

0.4

0.6

0.8

1.0

mean
 frequency

[τ−1
ref]

Figure 8.11: Mean frequency of 15 network neurons from a single simulation run us-
ing the greedy calibration scheme. Throughout different interconnection
weights the mean frequency of each neuron stays approximately the same
and the network remains stable.

50.5 50.0
rest potential [mV]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y

used activ. function

real activ. function
vthresh

Figure 8.12: Equivalent setup as in Fig. 8.10, but the calibration was done with the
greedy, non-iterative scheme. Both the approximation and the activity ob-
served while sampling with network connections are quite similar, demon-
strating that the non-iterative scheme should be used instead of the iterative
one.

122

8.8 Additional Results

8.8.6 Mean-to-Width Ratio of the Interconnections

0 2 4 6 8
maximum weight [ωp]

10-3

10-2

10-1

DKL

after 106 ms ratio 0.1

ratio 0.3

ratio 0.6

ratio 0.8

ratio 1.0

Figure 8.13: Mean DKL of all BMs in a network after sampling for 106ms. The network
consists of 100 3-neuron BMs with a connectivity ε = 0.1 and g = 1.0,
η = 0.5. Changing the mean-to-width ratio σW

µW
of the distribution from

which the interconnection weights are drawn has no significant effect on the
LIF sampling quality. Error bars are rather small and have been excluded
to provide readability in the plot. The outlier results from bad calibrations.

8.8.7 Shorter Sampling Time for Training Updates

10-2 10-1 100 101 102 103 104

simulation time [s]

10-3

10-2

10-1

100

101

DKL

1e5ms training

1e4ms training

Figure 8.14: Same setup as in Fig. 6.5, but the probabilities used to calculate the weight
and bias updates every step were either obtained after sampling for 105ms
and 1200 training steps (blue) and 104ms and 2000 training steps (red).
Both setups lead to similar results and the small differences occurring can
be reduced by further training the 104ms case.

123

8 Appendix

8.8.8 DKL after Training for Different Weight Ratios

102 103 10410-3

10-2

10-1

DKL

g=1.0 g=0.65 g=0.4

0.0 0.2 0.4
simulation time [s]

0

20

40

60

80

mean
freq. [Hz]

0

20

40

60 g = 1.0, 147 values above threshold

0

20

40

60 g = 0.65, 47 values above threshold

53 52 51 50 49 48
rest potential [mV]

0

20

40

60

network
distr.

g = 0.4, 8 values above threshold

Figure 8.15: Same setup as in Fig. 6.5, but with updates obtained after sampling for
104ms and 2000 training steps. The sea of BMs was realized for three
different values of g. (top) Even for excitation dominated interconnections,
i.e., g = 0.65 or g = 0.4, training leads to very good sampling results. Note
that g = 0.4 was only trained for 1200 steps, resulting in a slightly worse
DKL as in the other cases. Additionally, for smaller values of g the network
needs longer during start-up to reach the desired target mean network
activity. (bottom) Distribution over rest potentials set in the network
after translating the theoretical biases. The black vertical line marks the
threshold potential. Note that even a very small number of neurons (e.g. 8
out of 400) with strong excitatory noise connections is able to stably start
the network.

124

8.8 Additional Results

8.8.9 Sea of Boltzmann Machines as a Large Boltzmann
Machine

Again, the same setup as in Fig. 6.5 was used, but with a symmetric interconnection
weight matrix. To keep the initially symmetric weights even after cutting off a connection
Wij, the transposed entry Wji has to be set to 0 as well. While cutting off weights in
this way, one has to be careful not to cut off too many inputs of certain neurons due to
the need of symmetrizing the weight matrix after each step.

10-2 10-1 100 101 102 103 104

simulation time [s]

100

101

DKL

final DKL before training

2000 steps with ηCD = 400
s+2000

2000 steps with ηCD = 40
s+2000

2

1

0

1

2
ηCD = 400

s+2000

0 500 1000 1500 2000
training steps

2

1

0

1

2
weights ηCD = 40

s+2000

Figure 8.16: Same setup as in Fig. 6.5, but with a symmetric interconnection weight
matrix. Hence, the whole sea of BMs is a BM itself. (top) Even after
training for 2000 update steps as before, the sampling quality does not
improve considerably and remains in a very bad regime of DKL values.
(bottom) The reason for the bad sampling behavior originates from the
many feedback connections enforced by symmetrizing the weight matrix.
Consequently, every neuron receives only noise from neurons it provides
noise to, introducing strong correlations into the network. These cannot be
trained away with CD and lead to the flat weight evolution observed here
even for smaller learning rates.

125

Bibliography

Ackley, D. H., G. E. Hinton, and T. J. Sejnowski, A learning algorithm for Boltzmann
machines, Cognitive science, 9 (1), 147–169, 1985.

Arieli, A., A. Sterkin, A. Grinvald, and A. Aertsen, Dynamics of ongoing activity: expla-
nation of the large variability in evoked cortical responses, Science, 273 (5283), 1868,
1996.

Azevedo, F. A., L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti, R. E. Leite,
R. Lent, S. Herculano-Houzel, et al., Equal numbers of neuronal and nonneuronal
cells make the human brain an isometrically scaled-up primate brain, Journal of
Comparative Neurology, 513 (5), 532–541, 2009.

Azouz, R., and C. M. Gray, Cellular mechanisms contributing to response variability of
cortical neurons in vivo, The Journal of neuroscience, 19 (6), 2209–2223, 1999.

Breitwieser, O., Investigation of a Cortical Attractor-Memory Network, Bachelor thesis,
Heidelberg University, 2011.

Breitwieser, O., Towards a Neuromorphic Implementation of Spike-Based Expectation
Maximization, Master’s thesis, Heidelberg University, 2015.

Brette, R., and W. Gerstner, Adaptive Exponential Integrate-and-Fire Model as an
Effective Description of Neuronal Activity, Journal of neurophysiology, 94 (5), 3637–
3642, 2005.

Buesing, L., J. Bill, B. Nessler, and W. Maass, Neural dynamics as sampling: a model
for stochastic computation in recurrent networks of spiking neurons, PLoS Comput
Biol, 7 (11), e1002,211, 2011.

Bytschok, I., From Shared Input to correlated Neuron Dynamics: Development of a
Predictive Framework, Diploma thesis, Heidelberg University, 2011.

Cáceres, M. O., Harmonic potential driven by long-range correlated noise, Physical
Review E, 60 (5), 5208, 1999.

Cooley, J. W., and J. W. Tukey, An algorithm for the machine calculation of complex
Fourier series, Mathematics of computation, 19 (90), 297–301, 1965.

127

Bibliography

Davison, A., D. Brüderle, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, and P. Yger,
PyNN: a common interface for neuronal network simulators, 2009.

Dayan, P., and L. F. Abbott,Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems, vol. 10, Cambridge, MA: MIT Press, 2001.

De Carlos, J. A., and J. Borrell, A historical reflection of the contributions of Cajal and
Golgi to the foundations of neuroscience, Brain research reviews, 55 (1), 8–16, 2007.

Dieter, K., and D. Tadin, Understanding attentional modulation of binocular rivalry:
A framework based on biased competition, Frontiers in Human Neuroscience, 5, 155,
doi:10.3389/fnhum.2011.00155, 2011.

Duane, S., A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo, Physics
letters B, 195 (2), 216–222, 1987.

Fiser, J., C. Chiu, and M. Weliky, Small modulation of ongoing cortical dynamics by
sensory input during natural vision, Nature, 431 (7008), 573–578, 2004.

Fourcaud, N., and N. Brunel, Dynamics of the firing probability of noisy integrate-and-
fire neurons, Neural computation, 14 (9), 2057–2110, 2002.

Fuhrmann, G., I. Segev, H. Markram, and M. Tsodyks, Coding of temporal information
by activity-dependent synapses, Journal of neurophysiology, 87 (1), 140–148, 2002.

Geman, S., and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images, IEEE Transactions on pattern analysis and machine intelligence,
(6), 721–741, 1984.

Gerstner, W., and W. M. Kistler, Spiking neuron models: Single neurons, populations,
plasticity, Cambridge university press, 2002.

Gewaltig, M.-O., and M. Diesmann, NEST (NEural Simulation Tool), Scholarpedia, 2 (4),
1430, 2007.

Guillery, R., Observations of synaptic structures: origins of the neuron doctrine and its
current status, Philosophical Transactions of the Royal Society of London B: Biological
Sciences, 360 (1458), 1281–1307, 2005.

Hanggi, P., and P. Jung, Colored noise in dynamical systems, Advances in chemical
physics, 89, 239–326, 1995.

Hastings, W. K., Monte Carlo sampling methods using Markov chains and their appli-
cations, Biometrika, 57 (1), 97–109, 1970.

Henry, G., P. Bishop, R. Tupper, and B. Dreher, Orientation specificity and response
variability of cells in the striate cortex, Vision research, 13 (9), 1771–1779, 1973.

128

Bibliography

Hinton, G., A practical guide to training restricted boltzmann machines, 2010.

Hinton, G. E., Training products of experts by minimizing contrastive divergence,Neural
computation, 14 (8), 1771–1800, 2002.

Hodgkin, A. L., and A. F. Huxley, Action potentials recorded from inside a nerve fibre,
Nature, 144 (3651), 710–711, 1939.

Hodgkin, A. L., and A. F. Huxley, A quantitative description of membrane current
and its application to conduction and excitation in nerve, The Journal of physiology,
117 (4), 500, 1952.

Holt, G. R.,W. R. Softky, C. Koch, and R. J. Douglas, Comparison of discharge variability
in vitro and in vivo in cat visual cortex neurons, Journal of Neurophysiology, 75 (5),
1806–1814, 1996.

Hoyer, P. O., and A. Hyvarinen, Interpreting neural response variability as Monte Carlo
sampling of the posterior, Advances in neural information processing systems, pp.
293–300, 2003.

Jordan, J., Deterministic recurrent networks as a source of uncorrelated noise for func-
tional neural systems, Master’s thesis, University of Munich, 2013.

Jordan, J., T. Tetzlaff, M. Petrovici, O. Breitwieser, I. Bytschok, J. Bill, J. Schemmel,
K. Meier, and M. Diesmann, Deterministic neural networks as sources of uncorrelated
noise for probabilistic computations, p. Suppl 1: P62, 2015.

Khintchine, A., Korrelationstheorie der stationären stochastischen Prozesse, Mathema-
tische Annalen, 109 (1), 604–615, 1934.

Korcsák-Gorzó, A., Firing States of Recurrent Leaky Integrate-and-Fire Networks, Bach-
elor thesis, Heidelberg University, 2015.

Körding, K. P., and D. M. Wolpert, Bayesian integration in sensorimotor learning,Nature,
427 (6971), 244–247, 2004.

Kriener, B., H. Enger, T. Tetzlaff, H. E. Plesser, M.-O. Gewaltig, and G. T. Einevoll,
Dynamics of self-sustained asynchronous-irregular activity in random networks of
spiking neurons with strong synapses, Frontiers in computational neuroscience, 8,
2014.

Kullback, S., and R. A. Leibler, On information and sufficiency, The annals of mathe-
matical statistics, 22 (1), 79–86, 1951.

Kumar, A., S. Schrader, A. Aertsen, and S. Rotter, The high-conductance state of cortical
networks, Neural computation, 20 (1), 1–43, 2008.

129

Bibliography

Kungl, A. F., Sampling with leaky integrate-and-fire neurons on the HICANNv4 neuro-
morphic chip, Master’s thesis, Heidelberg University, 2016.

Lapique, L., Recherches quantitatives sur l’excitation electrique des nerfs traitee comme
une polarization, J Physiol Pathol Gen, 9, 620–635, 1907.

LeCun, Y., C. Cortes, and C. J. Burges, The MNIST database of handwritten digits,
1998.

Lee, D., N. L. Port, W. Kruse, and A. P. Georgopoulos, Variability and correlated noise
in the discharge of neurons in motor and parietal areas of the primate cortex, The
Journal of neuroscience, 18 (3), 1161–1170, 1998.

Leng, L., Deep Learning Architectures for Neuromorphic Hardware, Master’s thesis,
Heidelberg University, 2014.

Leng, L., M. A. Petrovici, R. Martel, I. Bytschok, O. Breitwieser, J. Bill, J. Schemmel, and
K. Meier, Spiking neural networks as superior generative and discriminative models,
2016.

Maass, W., and H. Markram, Synapses as dynamic memory buffers, Neural Networks,
15 (2), 155–161, 2002.

Maaten, L. v. d., and G. Hinton, Visualizing data using t-SNE, Journal of Machine
Learning Research, 9 (Nov), 2579–2605, 2008.

Mainen, Z. F., and T. J. Sejnowski, Reliability of spike timing in neocortical neurons,
Science, 268 (5216), 1503, 1995.

Martel, R., Generative Properties of LIF-based Boltzmann Machines, Master’s thesis,
Heidelberg University, hD-KIP 15-86, 2015.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equa-
tion of state calculations by fast computing machines, The journal of chemical physics,
21 (6), 1087–1092, 1953.

Millner, S., Development of a Multi-Compartment Neuron Model Emulation, Disserta-
tion, Heidelberg University, 2012.

Paradiso, M., A theory for the use of visual orientation information which exploits the
columnar structure of striate cortex, Biological cybernetics, 58 (1), 35–49, 1988.

Perez-Costas, E., M. Melendez-Ferro, and R. Roberts, Pyramidal neuron in the pre-
frontal cortex of the rat stained with the Golgi-Cox method, Neuropsychopharmacol-
ogy, 32 (10), http://www.nature.com/npp/journal/v32/n10/covers/index.html,
2007.

130

http://www.nature.com/npp/journal/v32/n10/covers/index.html

Bibliography

Petrovici, M. A., Form Versus Function: Theory and Models for Neuronal Substrates,
Springer, 2016.

Petrovici, M. A., J. Bill, I. Bytschok, J. Schemmel, and K. Meier, Stochastic inference
with deterministic spiking neurons, arXiv, 2013.

Petrovici, M. A., I. Bytschok, J. Bill, J. Schemmel, and K. Meier, The high-conductance
state enables neural sampling in networks of LIF neurons, p. Suppl 1: O2, 2015a.

Petrovici, M. A., D. Stöckel, I. Bytschok, J. Bill, T. Pfeil, J. Schemmel, and K. Meier, Fast
sampling with neuromorphic hardware, in Advances in Neural Information Processing
Systems 28, 2015b.

Petrovici, M. A., et al., Characterization and compensation of network-level anomalies in
mixed-signal neuromorphic modeling platforms, PLOS ONE, doi:dx.doi.org/10.1371/
journal.pone.0108590, 2014.

Pfeil, T., et al., Six Networks on a Universal Neuromorphic Computing Substrate, Fron-
tiers in Neuroscience, 7, 11, 2013.

Rolls, E., and G. Deco, The Noisy Brain: Stochastic Dynamics as a Principle of Brain
Function, 2010.

Roumani, D., and K. Moutoussis, Binocular rivalry alternations and their relation to
visual adaptation, Frontiers in human neuroscience, 6, 2012.

Salakhutdinov, R., and G. E. Hinton, Deep Boltzmann Machines., in AISTATS, vol. 1,
p. 3, 2009.

Salakhutdinov, R., A. Mnih, and G. Hinton, Restricted boltzmann machines for col-
laborative filtering, in Proceedings of the 24th international conference on Machine
learning, pp. 791–798, ACM, 2007.

Schemmel, J., A. Grübl, K. Meier, and E. Mueller, Implementing synaptic plasticity in a
VLSI spiking neural network model, in The 2006 IEEE International Joint Conference
on Neural Network Proceedings, pp. 1–6, IEEE, 2006.

Schemmel, J., J. Fieres, and K. Meier, Wafer-scale integration of analog neural networks,
in 2008 IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence), pp. 431–438, IEEE, 2008.

Schemmel, J., D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner, A wafer-scale
neuromorphic hardware system for large-scale neural modeling, in Proceedings of 2010
IEEE International Symposium on Circuits and Systems, pp. 1947–1950, IEEE, 2010.

131

Bibliography

Schiller, P. H., B. L. Finlay, and S. F. Volman, Short-term response variability of monkey
striate neurons, Brain research, 105 (2), 347–349, 1976.

Schwarz, U., Stochastic Dynamics, lecture notes, Heidelberg University, https://www.
thphys.uni-heidelberg.de/~biophys/PDF/Skripte/StochasticDynamics.pdf,
2012.

Shadlen, M. N., and W. T. Newsome, Noise, neural codes and cortical organization,
Current opinion in neurobiology, 4 (4), 569–579, 1994.

Shannon, C. E., A mathematical theory of communication., The Bell System Technical
Journal, 27, 1948.

Snowden, R. J., S. Treue, and R. A. Andersen, The response of neurons in areas V1 and
MT of the alert rhesus monkey to moving random dot patterns, Experimental Brain
Research, 88 (2), 389–400, 1992.

Stöckel, D., Boltzmann Sampling with Neuromorphic Hardware, Bachelor thesis, Hei-
delberg University, 2015.

Tsodyks, M. V., and H. Markram, The neural code between neocortical pyramidal
neurons depends on neurotransmitter release probability, Proceedings of the National
Academy of Sciences, 94 (2), 719–723, 1997.

Uhlenbeck, G. E., and L. S. Ornstein, On the theory of the Brownian motion, Physical
review, 36 (5), 823, 1930.

Van Rossum, G., and F. L. Drake Jr, Python tutorial, Centrum voor Wiskunde en
Informatica Amsterdam, The Netherlands, 1995.

Vogels, R., Population coding of stimulus orientation by striate cortical cells, Biological
cybernetics, 64 (1), 25–31, 1990.

Vogels, R., W. Spileers, and G. A. Orban, The response variability of striate cortical
neurons in the behaving monkey, Experimental brain research, 77 (2), 432–436, 1989.

Waldeyer, W., Ueber einige neuere Forschungen im Gebiete der Anatomie des Cen-
tralnervensystems, DMW-Deutsche Medizinische Wochenschrift, 17 (44), 1213–1218,
1891.

Wiener, N., Generalized harmonic analysis, Acta mathematica, 55 (1), 117–258, 1930.

Wikimedia Commons, A Necker cube, https://commons.wikimedia.org/wiki/File:
Necker_cube.svg, uploaded by Fibonacci, 2007.

132

https://www.thphys.uni-heidelberg.de/~biophys/PDF/Skripte/StochasticDynamics.pdf
https://www.thphys.uni-heidelberg.de/~biophys/PDF/Skripte/StochasticDynamics.pdf
https://commons.wikimedia.org/wiki/File:Necker_cube.svg
https://commons.wikimedia.org/wiki/File:Necker_cube.svg

Wikimedia Commons, "Kaninchen und Ente" ("Rabbit and Duck"), the earliest
known version of the duck–rabbit illusion, from the 23 October 1892 issue of
Fliegende Blätter, https://commons.wikimedia.org/wiki/File:Kaninchen_und_
Ente.png, uploaded by Gemena, 2012.

Wikimedia Commons, Diagram showing some of the main areas of the
brain, https://commons.wikimedia.org/wiki/File:Diagram_showing_some_of_
the_main_areas_of_the_brain_CRUK_188.svg, created by Cancer Research UK,
2014.

Wikimedia Commons, Synapse schematic (unlabeled), https://commons.wikimedia.
org/wiki/File:SynapseSchematic_lines.svg, created by Thomas Splettstoesser,
2015.

Yoo, A. B., M. A. Jette, and M. Grondona, Slurm: Simple linux utility for resource
management, in Workshop on Job Scheduling Strategies for Parallel Processing, pp.
44–60, Springer, 2003.

133

https://commons.wikimedia.org/wiki/File:Kaninchen_und_Ente.png
https://commons.wikimedia.org/wiki/File:Kaninchen_und_Ente.png
https://commons.wikimedia.org/wiki/File:Diagram_showing_some_of_the_main_areas_of_the_brain_CRUK_188.svg
https://commons.wikimedia.org/wiki/File:Diagram_showing_some_of_the_main_areas_of_the_brain_CRUK_188.svg
https://commons.wikimedia.org/wiki/File:SynapseSchematic_lines.svg
https://commons.wikimedia.org/wiki/File:SynapseSchematic_lines.svg

Acknowledgments

First of all, I’d like to thank Micha, Wei, Oli, Agnes and Anna for proof-reading parts
of my thesis.

Also many thanks to Ilja for all those helpful discussions, inspiring ideas, for your
guidance in general and for correcting the entire thesis! You were right that writing a
thesis takes a hell of a lot of time, thanks for that advice. And you will certainly enjoy
Dark Souls III, be excited!

A general shout-out is dedicated to Akos and Andi for ’making the office great (again)’.
I really enjoyed working and discussing with you guys, I hope we can continue this in
the years to come.

Furthermore, my sincerest gratitude to Mihai for giving me the opportunity to work on
such an epic topic. For all the discussions. For all the time you invested in us, correcting
each and every of our presentations. For actively supporting our endeavour of becoming
PhD students. And of course for proof-reading my thesis. All your efforts have not been
taken for granted. Thanks!

Many thanks to Karlheinz Meier for allowing me to join his workgroup and for giv-
ing me the opportunity to continue working on something I really enjoy and support
with all my heart. Also many thanks to Manfred Stärk for supporting my further studies!

My deepest gratitude and thanks to Katja, for always being at my side and supporting
me, even through times of doubt. May Chtugel’s mercy (or the Force?) always be with
you! And many thanks for proof-reading the whole thesis in such a short time!

Last but certainly not least, many thanks to my family, especially my parents. Thanks
for supporting me throughout my whole life. You are the best!

Finally, there remains only one thing to be said:

Praise the sun!

Solaire of Astora, Dark Souls

135

Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of my own
work. Any ideas or quotations from the work of other people, published or otherwise,
are fully acknowledged in accordance with the standard referencing practices of the
discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, September 13, 2016
.......................................

(signature)

	Introduction
	Theoretical Background
	Leaky Integrate-and-Fire (LIF) Neuron Model
	Tsodyks-Markram Model
	Stochastic Computing in Spiking Networks
	Neural Sampling
	LIF Sampling
	Kullback-Leibler Divergence

	Training Networks of Spiking Neurons
	Boltzmann Machines
	Contrastive Divergence

	A Sea of Boltzmann Machines: The Simplest Case
	Autocorrelations in Noise Spike Trains
	Correlation Patterns in the Free Membrane Potential
	Effect on the Free Membrane Potential Distribution

	LIF Sampling with Boltzmann Machine Noise

	Using Correlated Spike Trains from the Sea of Boltzmann Machines
	Merging Correlated Spike Trains
	Distributing Correlated Spike Trains
	Mixing Input Correlations
	Mixing Synapse Types
	LIF Sampling with Correlated Noise

	Connecting the Sea of Boltzmann Machines to a Large Network
	Introducing Interconnections in the Sea
	Calibrating on Intrinsic Noise
	Dealing with Network-Wide Correlations

	Intrinsic Noise Restoring Stochasticity
	The Poisson Fade-Out
	The Poisson Cut-Off

	Stochastic LIF Networks Without External Noise
	Deterministic Start of Networks
	Removing Correlations by Training
	Special Case: Boltzmann Machines with Zero Weights
	General Case: Boltzmann Machines with Random Weights

	Towards Small and Fully Connected Networks
	Setup 1: 11 Boltzmann Machines with 3 Neurons Each
	Setup 2: Small Networks with 10 Neurons Each

	Summary and Outlook
	Appendix
	Acronyms
	Parameters
	Simulation Software
	HICANN Wafer System
	Illustration of the Beta Distribution
	Illustration of the Interconnection Weight Distribution
	Proof for the Free Membrane Potential Autocorrelation Function
	Additional Results
	Sampling Quality Dependence on the Calibration Time
	k-th Neighbour Interval Distribution for Very Large Networks
	Sampling Quality with Bursting Noise Neurons
	Autocorrelation of Noise from Randomized Boltzmann Machines
	Comparison of the Two Calibration Schemes
	Mean-to-Width Ratio of the Interconnections
	Shorter Sampling Time for Training Updates
	DKL after Training for Different Weight Ratios
	Sea of Boltzmann Machines as a Large Boltzmann Machine

	Bibliography
	Acknowledgments

