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Abstract

This thesis addresses the question if and how energy is conserved in optical systems with Fano

spectral line shape control. The focus is mainly set on the dynamics of two - and three level atoms.

To investigate the time dependent energy distribution in these systems, a semiclassical version of

the well known Poynting vector from Classical Electrodynamics has been derived. Furthermore, a

transition from one irradiated atom to many atoms has been implemented to simplify the expression

for the scattered electromagnetic field, enabling us to perform energy calculations for laser pulses

as well. Thus, Fano control can be realised in a three-level system via a probe - and control pulse.

Doing so, it is possible to show that energy is indeed conserved in systems with Fano control. In fact,

the energy in the spectral line is just being redistributed. Additionally, it has been observed that an

overlap between probe - and control pulse leads to a manipulation of the scattering behaviour of the

atom, without breaking energy conservation.

Ziel dieser Bachelorarbeit ist es, Energieerhaltung in Systemen mit Fano Kontrolle der Spektrallinien

zu untersuchen. Die Analyse wird dabei hauptsächlich anhand von Zwei - und Drei Level Atomen

durchgeführt. Um die zeitliche Energieverteilung in solchen Systemen untersuchen zu können, wurde

zunächst eine semiklassische Version des aus der klassischen Elektrodynamik bekannten Poynting

Vektors hergeleitet. Zudem wurde der Fall von nur einem angestrahlten Atom auf viele Atome

verallgemeinert, wodurch sich das gestreute elektromagnetische Feld stark vereinfachen lässt. Dies

ermöglicht, auch Analysen für gepulste Laser durchzuführen. Letztendlich kann dadurch ein rea-

listisches Modell, bestehend aus einem Drei-Level Atom sowie einem Probe - und Kontrollpuls, zur

Implementierung von Fano Kontrolle in optischen Systemen aufgestellt werden. Ausführliche Unter-

suchungen zeigen, dass in solchen Systemen in der Tat Energieerhaltung gilt und die Manipulation

der Absorptionslinie durch eine Umverteilung der Gesamtenergie im Absorptionsspektrum bedingt

ist. Darüberhinaus wird das Streuverhalten des Atoms maßgeblich beeinflusst, wenn sich Probe - und

Kontrollpuls überlappen. Dieser Effekt führt jedoch nicht zu einem Verstoß der Energieerhaltung.
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1 INTRODUCTION

1 Introduction

La nature parâıt s’être proposé de faire beaucoup avec peu : c’est un principe que le perfec-

tionnement des sciences physiques appuie sans cesse de preuves nouvelles. [11]

In spectroscopy, the most well known line shape is the Lorentzian, originating from the fact that excited

atomic states have a finite lifetime. Even though other physical effects like Doppler broadening can alter

the spectral line shape, the underlying form describing the atomic resonance is still Lorentzian, which

can almost always be recovered by adjusting the experimental setup accordingly, e.g. using saturation

spectroscopy to get rid of Doppler broadening. Furthermore, the resonance curve of a driven harmonic

oscillator in classical mechanics is also a Lorentzian. Consequently, for a long time, the Lorentz profile

was assumed to be the fundamental line shape concerning resonance phenomena.

However, already back in 1902, Wood observed asymmetric line shapes in an optical experiment,

calling them “anomalies” [22]. The most prominent example for asymmetric resonance lines is probably

the absorption spectrum of the autoionizing states of Helium. The mechanism behind these has first been

explained in a paper by Ugo Fano in 1961 [33]. Briefly speaking, the line shape results from an interference

between a) a continuum of excited states and b) a discrete excited state with the same energy level [22].

The formula found by Fano for the shape of the resonance profile is [44]:

σFano(ω) = σ0
(q + ε)2

1 + ε2
(1)

With ε = ω−ω0

γ/2 , ω0 the resonance frequency, γ the width of the resonance and σ0 the cross section far

away from the resonance. q is the so called Fano parameter and measures the ratio of the transition

probabilities to the continuum of states and the discrete state. For instance, for q → ∞, the transition

to the discrete state dominates and we observe a Lorentz profile. For q = 1, both contributions are on

par and we get an asymmetric line shape.

Figure 1: Line shape dependent on the Fano parameter q. [22]
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1 INTRODUCTION

A more detailed analysis reveals, that this interference between two excitation channels leads to a phase

kick between the atomic dipole response function and the Lorentzian response. Thus, it is possible to

map this phase kick into the q-parameter, as has been demonstrated in a recent experiment [44]. As a

consequence, it is possible to manipulate the absorption line of an atomic excitation by giving its dipole

response a phase kick. This process is generally denoted as “Fano control” in this work.

Figure 2: Bijective mapping between phase kick and q-parameter. [44]

The goal of this thesis is to derive a theoretical framework, in which the energy conservation of optical

systems with such a Fano control can be understood. First, all the necessary basics and formulas for

the coming calculations will be derived or motivated. Furthermore, we will start by analysing simple

systems, like a single two-level atom that interacts with a plane laser wave, and gradually increase the

complexity of this system, e.g. by adding more atoms or switching to laser pulses. This will allow us to

construct a realistic theoretical model for Fano control, in which energy conservation can be extensively

examined.

7



2 THEORETICAL BASICS

2 Theoretical Basics

In this chapter, we will repeat the most important basics for understanding the scattering

of light by two level atoms. First of all, a short recap of classical electromagnetic waves

will be given, followed by a more indepth analysis of the quantum mechanical description

for coherent interactions between light and atoms. Afterwards, the inclusion of spontaneous

emission as a loss channel will be discussed. Even though the first chapters focus more on

energy conservation in scattering processes, the main goal of this work is to derive a framework

in which the energy distribution in systems with Fano control as seen in [55] and [44] can be

better understood. Hence, a subchapter about absorption lines and Fano profiles has been

included as well.

2.1 Classical Electrodynamics

Initially, a short revision of Classical Electrodynamics will be given. All formulas are shown in their non-

covariant form, since none of the coming calculations are relativistic. Throughout the whole document,

vectors will be denoted by bold and scalars by standard font. Furthermore, unit vectors will be marked

with a hat.

2.1.1 Maxwell Equations

The foundations of Electrodynamics, one of the most successful theories in physics predating our modern

Quantum Theory and Einstein’s Special and General Theory of Relativity, are the Maxwell Equations.

These are the equations of motion for the electric and magnetic field, from which every electrodynamic

phenomena that has no quantum nature can be described. They have the following form (in SI units)

[66]:

∇ ·E =
ρ

ε0
∇×E = −Ḃ (2a)

∇ ·B = 0 ∇×B = µ0j + µ0ε0Ė (2b)

Eqs. 2a2a roughly state that either a charge or a changing magnetic flux can create an electric field. In

the same manner, eqs. 2b2b tell us that magnetic fields have no source in the form of a magnetic charge.

Thus, magnetic fields can only be created by a current density or a changing electric flux.

2.1.2 Electromagnetic Waves

Electromagnetic waves are a special solution of the Maxwell Equations (Eqs. 22). Since electromagnetic

waves propagate through space-time independently of their initial source, we can eliminate all matter

sources of the electromagnetic field. Thus, we get

8



2 THEORETICAL BASICS 2.1 Classical Electrodynamics

∇ ·E = 0 ∇×E = −Ḃ (3a)

∇ ·B = 0 ∇×B =
1

c2
Ė (3b)

whereby we replaced µ0ε0 = 1
c2 and set ρ = 0, j = 0.

The equation of motion for the electric part of the electromagnetic field can now be derived as follows:

First, we evaluate the expression ∇× (∇×E)

∇× (∇×E) = ∇ (∇ ·E)︸ ︷︷ ︸
=0

−∆E (4a)

= −∆E (4b)

Next, we evaluate ∇× Ḃ

∇× Ḃ =
d

dt
(∇×B) (5a)

=
1

c2
Ë (5b)

Consequently, using eqs. 3a3a our final result is [66]

∆E − 1

c2
Ë = 0 (6)

This partial differential equation is commonly known as the wave-equation, since its solution space is

spanned by waves with wave vector k and frequency ω. Note that the magnetic field has to obey the

same differential equation as the electric part.

∆B − 1

c2
B̈ = 0 (7)

Now, an example for a solution would be plane waves:

E = E0 e
i(kr−ωt) (8a)

B = B0 e
i(k′r−ω′t) (8b)

Beside the wave equation, these solutions still have to obey the Maxwell Equations. Therefore, we get

an additional set of restrictions. For instance, we can insert our solutions into eqs. 3a3a:

9



2 THEORETICAL BASICS 2.1 Classical Electrodynamics

∇×E = −Ḃ

⇒ i(k ×E0)ei(kr−ωt) = iB0ω
′ei(k

′r−ω′t) (9)

This gives us the following restrictions:

k = k′ (10a)

ω = ω′ (10b)

k ×E0 = ωB0 (10c)

If one does this for all Maxwell Equations, the main result is that E ⊥ B ⊥ k (see [66]).

Additionally, we can insert the plane wave 8a8a into the wave equation 66. From this we get

ω = k · c (11)

which is the dispersion relation for light in vacuum. It describes how spatial and time evolution of the

electromagnetic wave are connected to each other. Note that c is the propagation velocity of the wave.

By taking into account that electromagnetic waves are real and not complex quantities, we can write

a general plane wave which solves the Maxwell Equations for vacuum in the following way:

E = E(+) +E(−) (12a)

with E(+) = E0 ε̂ e
i(kr−ωt) and E(−) = E(+)† (12b)

B = B(+) +B(−) (12c)

with B(+) =
E0

c
(k̂×ε̂) ei(kr−ωt) and B(−) = B(+)† (12d)

Here, ε̂ is the unit poliarization vector, which has to be in the plane orthogonal to the propagation

direction k̂. We will use this notation of the electromagnetic field throughout the whole thesis.

2.1.3 Electromagnetic Field of an Oscillating Dipole

In the previous chapter, we calculated the form of the electromagnetic field which propagates through

space-time independently of its initial source. Now, we will take a closer look at what happens when

we introduce a source, e.g. an oscillating dipole. In this case, one normally first derives the potentials

Φ(r, t) and A(r, t). The electric and magnetic field is then calculated via (in SI units):

10



2 THEORETICAL BASICS 2.1 Classical Electrodynamics

E = −∂tA(r, t)−∇Φ(r, t) (13a)

B = ∇×A(r, t) (13b)

Hereby, Φ(r, t) is the standard scalar potential known from classical electrostatics and A(r, t) is the

vector potential, which is normally introduced in magnetostatics.

In this notation, the wave equation can be rewritten for the potentials. Thus, we get [77]

(− 1

c2
∂2
t + ∇2)Φ = − ρ

ε0
(14a)

(− 1

c2
∂2
t + ∇2)A = −µ0j (14b)

where ρ is the charge density. For the case of vacuum, the righthand sides would all be 0 and we’d

get the same results as in chapter 2.1.22.1.2. So due to the introduction of sources, we have to solve an

inhomogeneous partial differential equation now.

The standard technique is to introduce a function G(r, t; r′, t′) called Green’s Function which suffices

the equation

(− 1

c2
∂2
t + ∇2) G(r, t; r′, t′) = − δ(r − r′) δ(t− t′) (15)

As soon as we have found the expression for G(r, t; r′, t′), we can calculate the potentials via

Φ(r, t) =
1

ε0

∫
G(r, t; r′, t′) ρ(r′, t′) d3r′ dt′ (16a)

A(r, t) = µ0

∫
G(r, t; r′, t′) j(r′, t′) d3r′ dt′ (16b)

Here, the meaning of the Green’s Function becomes instantly clear. When we, for instance, change the

configuration of our charge distribution, this won’t instantly affect the electric field someone far away

sees as the information of our change travels with a finite velocity through space. Roughly speaking,

the Green’s Function somewhat correctly “couples” the charge configuration at (r′, t′) to the space-time

point (r, t).

This can be seen even better if one solves these equations (for the calculation, see [77]):

Φ(r, t) =
1

4πε0

∫
ρ(r′, t− |r−r

′|
c )

|r − r′|
d3r′ (17a)

A(r, t) =
µ0

4π

∫
j(r′, t− |r−r

′|
c )

|r − r′|
d3r′ (17b)
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2 THEORETICAL BASICS 2.2 Coherent Atom-Light Interaction for a Two-Level System

As we can see, the end results resemble the normal expressions for the electromagnetic potentials, with

the exception that the finiteness of information transport has been included.

With eqs. 1313 and 1717, one can now calculate the electromagnetic field of an oscillating dipole d(t).

Again, we skip the calculation and only give the results in SI units (for the calculation, see again [77]).

E(r, t) = − d̈(t′)

4πε0rc2
− 1

4πε0

(
ḋ(t′)

r2c
− d(t′)

r3
+

(d̈(t′) · r)r

r3c2
+

3(ḋ(t′) · r)r

r4c
+

3(d(t′) · r)r

r5

)
(18a)

B(r, t) =
1

4πε0c2

(
ḋ(t′)× r
r3c

+
d̈(t′)× r
r2c2

)
(18b)

Here, t′ is given by t′ = (t− r
c ). For the field far away from the source (r →∞) and d ∼ eiωt′ + e−iωt

′
,

we therefore get (in SI units) [77]:

E(r, t) =
k2

4πε0r
(ei(kr−ωt) + c.c.) (r̂ × d̂)× r̂ (19a)

B(r, t) =
1

c
(r̂ ×E) (19b)

Note that here, d has no time dependence anymore. Furthermore, as one would expect, the field of an

oscillating dipole with frequency ω is a spherical wave with exactly this frequency. In chapter 2.2.22.2.2, we

will derive a similar expression for the emitted field of a two-level atom that is being excited by a laser.

2.2 Coherent Atom-Light Interaction for a Two-Level System

Next, we will give a short recap of the most fundamental parts of light-matter interaction. Operators will

also be denoted with a hat, but it should always be clear by context whether a given symbol represents

an operator or a unit vector. Furthermore, operators won’t be in bold face.

2.2.1 Jaynes Cummings Hamiltonian

Whenever we analyse a quantum mechanical system, one almost always starts with writing down the

Hamiltonian for the system. The reason for this is quite simple: When we succeed in diagonalizing the

Hamiltonian, we have a complete set of states that are invariant under time translation. All further

allowed states of the system are therefore superpositions of the Hamiltonian’s Eigenstates and their time

dependence can be constructed trivially by using the Schrödinger Equation.

Without an electromagnetic field present, the Schrödinger Equation has the following form [88]:

ih̄∂tψ =

(
− h̄2

2m
∇2 + V (r)

)
ψ (20)

For instance, in the case of the Hydrogen Atom, V (r) would be the Coulomb Potential and m the reduced

mass of the electron-proton system. We can now introduce an electromagnetic field by the principle of

minimal coupling (for a subtle motivation of this step, see [88] or [99]). Thus, we get
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2 THEORETICAL BASICS 2.2 Coherent Atom-Light Interaction for a Two-Level System

ih̄∂tψ =

(
− h̄2

2m

(
∇− ie

h̄
A(r, t)

)2

+ V (r)

)
ψ (21)

whereby A(r, t) is the vector potential of the electromagnetic field, already introduced in chapter 2.1.32.1.3.

By assuming that the light’s wavelength is much larger than the atomsize, we can make the approxi-

mation A(r, t) ' A(r0, t), with r0 the atom position (dipole approximation [88]). By using the unitary

transformation U = e−
ie
h̄ A(r0,t)r, we can write ψ = U†Uψ = U†ψint and therefore:

ih̄∂tψint =

(
− h̄2

2m
∇2 + V (r)− eE(r0, t)r

)
ψint (22)

E(r0, t) is the electric field of the light. So by using minimal coupling and doing one transformation, we

were able to bring the Hamiltonian into a form which resembles the Hamiltonian without any electro-

magnetic field, but modified with an interaction term Hint = −eE(r0, t)r. From here on, one normally

chooses an appropriate Interaction Picture to get rid of the time dependence of the electric field. This

leads to the following Hamiltonian (see [1010]):

Ĥ = −h̄∆Ŝee + h̄
(

Ω Ŝeg + Ω∗ Ŝge

)
(23)

with Ŝxy = |x〉 〈y| ,

∆ → detuning,

Ω = −E0ε̂d

h̄
→ Rabi Frequency,

|g〉 → ground state, |e〉 → excited state

Furthermore, one would have to quantize the electromagnetic field, such that we have a fully quantum

mechanical theory. As our Hamiltonian is right now, only the matter part is quantized and the fields

are classical. Quantizing the electromagnetic field will lead to the Jaynes Cummings Hamiltonian (for

an in-depth derivation, see [88] or [1010]). Thus, the J.C. Hamiltonian for a two-level atom (with rotating

wave approximation) takes the form:

ĤJ.C. = h̄ωeŜee + h̄ωgŜgg︸ ︷︷ ︸
atomic electron structure

+ h̄ω0

(
â†â+

1

2

)
︸ ︷︷ ︸

quantized field

+ h̄
(
gŜegâ+ g∗Ŝgeâ

†
)

︸ ︷︷ ︸
interaction between atom and field

(24)

Note that in this form, we haven’t chosen a specific Interaction Picture yet. Moreover, g is the Rabi

Frequency g = −E0ε̂d
h̄ and a, a† are the annihilation and creation operator for the quantized electromag-

netic field. In most textbooks, E0 is chosen as E0 =
√

h̄ω0

2ε0V
with V the quantization volume (see [1111],

[1212]). We will make use of this definition for some theoretical calculations, but for more experimental

orientated calculations, we will only use E0 as a variable.

Additionally, the Jaynes Cummings Hamiltonian can be written in the following form:

13



2 THEORETICAL BASICS 2.2 Coherent Atom-Light Interaction for a Two-Level System

ĤJ.C. = h̄ωeŜee + h̄ωgŜgg + h̄ω0

(
â†â+

1

2

)
+ ih̄

(
gŜegâ− g∗Ŝgeâ†

)
(25)

This version is equivalent to eq. 2424, but for some calculations, it’s more practical. Note that this

Hamiltonian still fulfills the condition Ĥ†J.C. = ĤJ.C., which is necessary for the Hamiltonian to be an

operator.

2.2.2 Quantum Mechanical Derivation of the Scattered Field

We will now derive the scattered field of a two level-atom. The calculation is mostly taken from [1111] and

[1212]. First, we start with the positive frequency part of the electric field operator in its quantized form:

Ê(+)(r, tr) = i
∑
k,λ

√
h̄ωkλ
2ε0V

ε̂k,λâk,λ(tr)e
ikr (26)

Note that we a) assume a general polarisation and b) sum over all possible momenta. Moreover, we

assume that the atom sits at the origin. The time dependence lies in the annihilation operator âk,λ(tr)

with tr = t + r
c . In our case, tr is the time when we detect the field at the detector’s position r. This

signal depends on the evolution of the source field emitted at the earlier time t [1111]. The reaction of

the atom due to the field is best calculated in the Heisenberg picture. Thus, we get âk,λ(tr) via the

Heisenberg Equation:

ih̄ ˙̂a(t) = [â, ĤJ.C.] (27)

ĤJ.C. is the Jaynes Cummings Hamiltonian defined in eq. 2525. Hence, we obtain:

˙̂a(t) = −iωâ(t)−g∗(t)Ŝge(t) (28a)

⇒ eiωt ˙̂a(t) + eiωtiωâ(t) = −g∗(t)Ŝge(t)eiωt (28b)

⇒ d

dt

(
eiωtâ(t)

)
= −g∗(t)Ŝge(t)eiωt (28c)

Integrating this equation, we get:

â(tr) = â(0)e−iωtr −
∫ tr

0

g∗(t′)Ŝge(t
′)eiω(t′−tr)dt′ (29)

14
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We can insert this now into eq. 2626:

E(+)(r, tr) = i
∑
k,λ

√
h̄ωkλ
2ε0V

ε̂k,λâk,λ(0)ei(kr−ωkλtr)

− i
∑
k,λ

√
h̄ωkλ
2ε0V

ε̂k,λe
ikr

∫ tr

0

g∗(t′)Ŝge(t
′)eiωkλ(t′−tr)dt′ (30)

The first part represents the solution for the electromagnetic field as if no atom was present, i.e. it’s

similar to the incident field. Therefore, it looks identical to the solution of the homogeneous Maxwell

Equations in chapter 2.1.22.1.2. The second part is the reply of the atom to the incident laser beam, i.e. the

field scattered by the atom. In the following, we will take a closer look at the expression for the scattered

field.

First, we can use the lowest order approximation of Ŝge to simplify the time integral. This can be

obtained by evaluating the Heisenberg Equation just for the free Hamiltonian without any laser. Thus,

we can say [1212]:

Ŝge(t
′) ' Ŝge(tr)e−iω0(t′−tr) (31a)

⇒
∫ tr

0

g∗(t′)Ŝge(t
′)eiωkλ(t′−tr)dt′ ' Ŝge(tr)

∫ tr

0

g∗(t′)ei(ωkλ−ω0)(t′−tr)dt′ (31b)

In our case, g∗(t′) is independent of time and we can pull it out of the integrand. To simplify our

notation, we will define J−(tr) =
∫ tr

0
ei(ωkλ−ω0)(t′−tr)dt′ to get

E
(+)
scat(r, tr) = −i

∑
k,λ

√
h̄ωkλ
2ε0V

ε̂k,λe
ikrŜge(tr)g

∗J−(tr) (32a)

= i
∑
k,λ

ωkλ
2ε0V

(d · ε̂k,λ)ε̂k,λe
ikrŜge(tr)J−(tr) (32b)

= i
∑
k

ωkλ
2ε0V

(
d− (d · k̂)k̂

)
eikrŜge(tr)J−(tr) (32c)

where we replaced g∗ and evaluated the polarization-sum
∑
λ(d · ε̂k,λ)ε̂k,λ = d − (d · k̂)k̂ (see Ap-

pendix A.1A.1). Next, we can replace the summation over the wave vectors with an integral containing the

appropriate density of modes
∑
k →

V
(2π)3c3

∫∞
0

∫ 2π

0

∫ π
0
ω2 sin θ dωdφdθ.

E
(+)
scat(r, tr) = i

V

(2π)3c32ε0V
Ŝge(tr)J−(tr)

∫ ∞
0

∫ 2π

0

∫ π

0

ω3 sin θ
(
d− (d · k̂)k̂

)
eikr dωdφdθ (33)

The surface integral can be solved by using the stationary phase argument: Only those directions con-

tribute to the integral for which the phase ikr is stationary. Thus, the wavevector has to obey k̂ = ±r̂
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[1111]. Therefore, we can simplify the integral by approximating d− (d · k̂)k̂ → d− (d · r̂)r̂. A short ex-

planation of the stationary phase argument is given in Appendix A.2A.2. Further, it’s important to remark

that this approximation is only valid for the case of large r, i.e. r →∞. This is equivalent to the far-field

transition in eq. 1919 for the classical dipole field. Using the Grassmann-identity d− (d · r̂)r̂ = (r̂×d)× r̂,

we now have

E
(+)
scat(r, tr) = i

1

16π3c3ε0
Ŝge(tr)J−(tr)

∫ ∞
0

∫ 2π

0

∫ π

0

ω3 sin θeikr dωdφdθ (r̂ × d)× r̂ (34)

and choosing r along the z-direction, we get ikr = ikr cos θ such that the surface integral can be easily

evaluated to
∫ 2π

0

∫ π
0

sin θeikr cos θ dφdθ = −i 2πc
ωr

(
ei
ωr
c − e−iωrc

)
.

E
(+)
scat(r, tr) =

1

8π2c2ε0r
Ŝge(tr)J−(tr)

∫ ∞
0

ω2
(
ei
ωr
c − e−iωrc

)
dω (r̂ × d)× r̂ (35)

Using again Ŝge(tr) ' Ŝge(t)e−iω0(tr−t) = Ŝge(t)e
−iω0(t+ r

c−t) = Ŝge(t)e
−iω0r

c we have a term ∼ e−i
ω−ω0
c r

and ∼ e−i
ω+ω0
c r. The second term is strongly oscillating and thus won’t contribute to the field. Therefore,

we get:

E
(+)
scat(r, tr) =

1

8π2c2ε0r
Ŝge(t)J−(tr)

∫ ∞
0

ω2ei
ω−ω0
c r dω (r̂ × d)× r̂ (36)

We can now approximate J−(tr) =
∫ tr

0
ei(ω−ω0)(t′−tr)dt′ ' 2πδ(ω − ω0) [1111] to get:

E
(+)
scat(r, tr) =

k2
0

4πε0r
Ŝge(t) (r̂ × d)× r̂ (37)

Defining Ŝge(t) = Ŝ−(t)e−iω0t [1313], our final result becomes:

E
(+)
scat(r, tr) =

k2
0

4πε0r
Ŝ−(t)ei(k0r−ω0tr) (r̂ × d)× r̂ (38)

As expected, the scattered field of a two-level atom is almost equivalent to the field of a classical oscillating

dipole (eq. 1919). The only exception is the atom-operator, which allows new quantum effects to occur.

We will take this form of the scattered field for all coming calculations.

2.3 Modelling Spontaneous Emission

In this chapter, we will motivate spontaneous emission and solve the density matrices for a two-level

atom.
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2.3.1 Introducing Density Matrices

Normally, analysing the interaction between a monochromatic laser and a two-level atom consists of

finding the eigenbasis of the Jaynes-Cummings Hamiltonian (eq. 2424). However, Hamiltonian dynamics

only includes coherent (reversible) processes, i.e. absorption and stimulated emission. Thus, we are

missing incoherent (irreversible) processes like spontaneous emission, which arise from the fact that our

system is also coupled to the vacuum (so called “bath”). This means that an excited atom can also emit

a photon by exciting a mode of the vacuum electromagnetic field.

This is considered as a loss channel, since the vacuum is “so large” that the photon will never come

back to the atom to be reabsorbed. Furthermore, superposition states will be destroyed by spontaneous

emission and instead, we get a statistical mixture. Such mixed states can’t be described with a wave

function, therefore we have to introduce a new quantity: The Density Matrix.

The Density Matrix of a system is defined as:

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (39)

|ψi〉 are all the possible states our physical system can be in and pi are the probabilities to find it in state

|ψi〉. Note that a statistical mixture is no superposition of states, thus we won’t observe any interference

effects. The system is in either of these states, not in “all of them” at once. The expectation value of an

observable Ô can be calculated via:

〈Ô〉 = Tr{Ôρ̂} (40)

Therefore, we get in the case of a two-level atom:

〈Ŝ−〉 = ρ̂eg (41a)

〈Ŝ+〉 = ρ̂ge (41b)

〈Ŝ+Ŝ−〉 = ρ̂ee (41c)

Additionally, the Schrödinger Equation is replaced by the Liouville Equation:

ih̄∂tρ̂ = [Ĥ, ρ̂] (42)

A more detailed introduction with examples can be found in [88] or [1010]. With these definitions, we are

now able to describe spontaneous emission.
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2.3.2 Master Equation

The main idea now is to separate our system into two coupled parts: The atom and the environment

or “bath” (vacuum). Explicitely speaking, our density matrix ρ̂ describes both parts, thus when we are

only interested in the dynamics of the atom, we have to trace out the vacuum and vice versa. This is

the same as integrating out all degrees of freedom we don’t care about in statistical physics, i.e. in our

case, we are not interested in the state the vacuum is in. This is very nicely explained in [88] with respect

to the EPR-Paradox. Hence, formally we can write

ρ̂A = TrV {ρ̂} (43)

whereby A stands for atom and V for vacuum. This ansatz can now be used to derive the Master

Equation. However, since this calculation is very long, only the result will be stated here [1010].

∂tρ̂A(t) = −γ
2

(
ŜegŜgeρ̂A(t) + ρ̂A(t)ŜegŜge − 2Ŝgeρ̂A(t)Ŝeg

)
(44a)

with γ =
d2ω3

0

3πε0h̄c3
(44b)

This is the so called Lindblad form of the Master Equation [1010] with γ the decay rate and d the induced

dipole moment of the atom.

Thus, our total equation of motion including coherent and incoherent processes now is:

∂tρ̂A(t) =
1

ih̄
[Ĥ, ρ̂A(t)]− γ

2

(
ŜegŜgeρ̂A(t) + ρ̂A(t)ŜegŜge − 2Ŝgeρ̂A(t)Ŝeg

)
(45)

2.3.3 Density Matrix Elements for a Two-Level System

Taking eq. 2323 for the Hamiltonian, we get the following differential equations for the density matrix

elements ([88], [1010]):

∂tρ̂ee = −γρ̂ee + iΩ(ρ̂eg − ρ̂ge) (46a)

∂tρ̂eg = −(
γ

2
− i∆)ρ̂eg + iΩ(ρ̂ee − ρ̂gg) (46b)

The simplest way to solve these is to only look at the stationary solutions, i.e. the solutions for ∂tρ̂ee = 0

and ∂tρ̂eg = 0. This can be calculated quite easily by hand or with Mathematica (see Appendix B.1B.1).
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The solutions are:

ρ̂ee =
4Ω2

γ2 + 4∆2 + 8Ω2
(47a)

ρ̂eg =
Ω(4∆− 2iγ)

γ2 + 4∆2 + 8Ω2
(47b)

ρ̂ge =
Ω(4∆ + 2iγ)

γ2 + 4∆2 + 8Ω2
(47c)

From this, we can easily deduce that for the stationary case we have:

Im(ρ̂eg) = − γ

2Ω
ρ̂ee (48)

The equations of motion can also be solved for the non-stationary case. Hereby, only the special cases

with either ∆ = 0 or γ = 0 can be solved analytically. The general case with both values 6= 0 has to be

solved numerically. For a documentation of how to do this in Mathematica, see Appendix B.1B.1 and B.2B.2.

In the following, some examples for the possible solutions are shown:

Figure 3: Population difference as a function of time for different values of ∆, γ and Ω. (top left) For γ = 0,∆ = 0

we get normal Rabi oscillations which go on as long as the laser is active. (top right) For γ 6= 0,∆ = 0, damping

is introduced which stops the oscillations and leads to a steady state. (bottom) The most general case with

γ 6= 0, ∆ 6= 0 which leads to reduced and damped Rabi oscillations.
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2.4 Detector Signal

The detection of light normally includes the excitation of an electronic configuration. A brief introduction,

which neglects the details of the experimental realization, will be given in this chapter. Moreover, the

expected detection signal for the scattering of light at a two-level atom will be discussed.

2.4.1 Correlation Function

We will now study the detection of light by considering an ideal photon-counter. This counter shall

work via photon absorption, i.e. a photon is absorbed by freeing an electron from a metal’s surface

(Photoeffect). This electron can then be detected with a Photomultiplier. The following derivation has

been taken from [1414]:

First, the probability for the detection of a photon is given by

Pfi ∼ | 〈f |E(+)(r, t) |i〉 |2 (49)

with |i〉 the initial state of the electromagnetic field and |f〉 the final state after the detector absorbed

one photon. To get the total detection probability, we have to take into account all possible final states.

Note that we can just sum over all states, since those that can’t be reached from |i〉 by absorbing only

one photon will give no contribution (they are orthogonal to E(+)(r, t) |i〉, i.e. 〈f⊥|E(+)(r, t) |i〉 = 0).

Thus, the total counting rate is given by

I(r, t) ∼
∑
f

| 〈f |E(+)(r, t) |i〉 |2 (50a)

=
∑
f

(
〈i|E(−)(r, t) |f〉 〈f |E(+)(r, t) |i〉

)
(50b)

= 〈i|E(−)(r, t)E(+)(r, t) |i〉 (50c)

where we used
∑
f |f〉 〈f | = 1. Here, we assumed that the field is initially in a pure state |i〉. We can

further generalize this for statistical mixtures with probability pi for the state |i〉.

I(r, t) ∼
∑
i

pi 〈i|E(−)(r, t)E(+)(r, t) |i〉 (51a)

= Tr{ρ̂E(−)(r, t)E(+)(r, t)} (51b)

We can also write the result in a more neutral fashion:

I(r, t) ∼ 〈E(−)(r, t)E(+)(r, t)〉 (52)
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Furthermore, in the case that the electromagnetic field is a superposition of two fields E = E1 +E2, we

get

I(r, t) ∼ 〈E(−)E(+)〉 (53a)

= 〈E(−)
1 E

(+)
1 〉︸ ︷︷ ︸

field 1 alone

+ 〈E(−)
2 E

(+)
2 〉︸ ︷︷ ︸

field 2 alone

+ 〈E(−)
1 E

(+)
2 〉+ 〈E(−)

2 E
(+)
1 〉︸ ︷︷ ︸

interference between field 1 and 2

(53b)

Later on, when we talk about the detected intensity from scattering experiments, we will get similar

expressions like this one (see chapter 3.13.1).

2.4.2 Lorentzian Lines

Whenever we perform a standard spectroscopy experiment on a gas like 87Rb or 133Cs, we ordinarily

irradiate a sample of the substance with a laser and detect the laser beam’s intensity with a photo

diode after it has passed the gas. Scanning the laser-frequency over a small range around the resonance-

frequency of a certain electronic transition of the atoms, we obtain (neglecting additional broadening

mechanisms like Doppler-broadening) Lorentzian line shapes. More thorough, the detected signal of the

scattered light will have the form of a positive Lorentzian in dependence of the detuning ∆, and the light

that passed the atomic gas will show a negative Lorentzian ([1515], [1616]).

This line form originates from the fact that an excited atom has a finite lifetime, i.e. it won’t reemit

the light spontaneously but statistically after a certain finite time γ−1 with γ the decay rate. We can

model this by using the equation of motions for the density matrix elements from chapter 2.3.32.3.3. We

will assume our atom to be in the excited state and our laser to be off. Therefore, choosing ρ̂ee(0) = 1,

ρ̂eg(0) = ρ̂ge(0) = ρ̂gg(0) = 0 and Ω = 0, we obtain:

∂tρ̂ee(t) = −γρ̂ee(t) (54a)

⇒ ρ̂ee(t) = e−γt (54b)

Consequently, the probability of the atom to be in the excited state decays exponentially, i.e. for early

times it is very likely to observe a decay and for larger values of t it becomes more and more unlikely.

The decay time of the atom is therefore exponentially distributed with expectation value γ−1, which is

normally denoted as the lifetime.

The emitted light is proportional to eiω0t+c.c. with ω0 the frequency of the emitted light. Combining

the statistical decay and the emitted plane wave, we get for the signal of a statistical ensemble of atoms

[1717]:

E(t) ∼ e−γteiω0t + c.c. (55)
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The frequency spectrum c(ω) of this signal can be obtained by calculating the Fourier-Transform [1717]:

c(ω) =

∫ ∞
0

E(t)e−iωtdt (56a)

⇒ |c(ω)|2 ∼ 1

(ω − ω0)2 + γ2
(56b)

where |c(ω)|2 gives us the frequency-dependence of the emitted light’s intensity. As already stated, this

has the form of a Lorentzian which results from the finite decay rate γ. This is also known as the natural

lineshape of a spectral line.

2.4.3 Fano Lines

In spectroscopy, Fano profiles occur due to an interference between “a spectrally broad continuum (...)

with a spectrally narrow bound state” [55]. A straight forward example for this is the photoionization of

an atom, which can happen two ways. For simplicity, we assume the atom to have only two electrons in

its innermost shell, as it’s the case for e.g. Helium.

The first way to remove one of the electrons is to excite one of them with enough energy to pass

the ionization threshold. Thus, we directly excite the electron into a continuum of states. However,

the electron can also be removed by exciting the atom into a quasi-discrete level, from which it can

spontaneously eject one of the electrons [22]. This process is called Autoionization. For instance, one

autoionizing state can be reached by exciting both electrons with only one photon, whereby the total

transferred energy is larger than the ionization threshold. This way, one of the electrons can again decay

to a lower level by further exciting the second electron, and therefore ionizing it (Auger effect).

Figure 4: Ionization of Helium. There are two ways to free one of the electrons from the atom: First, via a

quasi-discrete state |d〉 (Autoionization) or a continuum of states |c〉 (direct excitation). [22]

Therefore, we have two states which are coupled by two different paths, the states being a) the atom

in its ground state and b) the atom with one electron ejected. As we can’t be certain which ionization

mechanism was used, interference occurs which leads to the observation of Fano profiles.
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This effect has also been recently observed in the X-ray light reflected by thin-film cavities with Mössbauer

nuclei, where the light can either a) be reflected without interacting with the nuclei (continuum channel)

or b) interact with the nuclei before leaving the cavity again (discrete channel). The superposition of

these two reflection channels leads again to Fano profiles [55].

Moreover, it has recently been demonstrated that this coupling between two ionization/reflection -

channels can be understood in terms of a phase kick between the exciting light and the scattered field

of the atom [44]. Therefore, giving the atomic dipole response an artificial phase kick enables us to

manipulate the detected absorption line.

Also note that the asymmetric Fano profile can be recovered from the calculation in chapter 2.4.22.4.2:

c(ω) =

∫ ∞
0

e−γte−i(ω−ω0)tdt (57a)

=
γ

γ2 + (ω − ω0)2
+ i

ω − ω0

γ2 + (ω − ω0)2
(57b)

Thus, the asymmetric Fano profile is the imaginary part of the exponential decay’s spectrum. Since the

absorption is proportional to −Re
(
c(ω)

)
(see chapter 3.1.33.1.3 and 6.1.46.1.4), giving the decay a phase kick will

mix the real - and imaginary part, such that the Fano profile is revealed.

Exactly this mechanism will be investigated thoroughly in the following chapters.

Figure 5: Experimental data showing the manipulation of the detected absorption profile. (A) Fano lines are

observed in the spectrum of the transmitted broadband attosecond pulse, which originate from the interference

between a discrete and a continuous ionization channel. (B) Giving the atomic response an additional phase kick

transforms the absorption profile into Lorentzians. (C) Lorentz profiles which originate from the excitation of a

single electron below the ionization threshold. (D) Introducing a phase kick allows us to transform the absorption

profiles into Fano lines. For a more detailed explanation of the experiment and its results, see [44].
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3 Scattering of Light with one Two-Level Atom

The first system we will analyse is the simple case of one atom with two-level structure which

is excited by a monochromatic plane wave. By two-level structure it is meant that the laser can

only drive the transition between two levels and even a larger detuning won’t drive a transition

to a new third level. For investigating the energy conservation in this system, appropriate

“semiclassical” versions of the Poynting vectors known from Electrodynamics will be derived.

These are of utter importance for all coming investigations, as they provide a nice formalism

for checking energy conservation in systems where Fano control can be implemented. At the

end of this chapter, we will also investigate the signal of a pointlike detector, which will reveal

a Fano profile.

As has been shown in chapter 2.2.22.2.2, when a two-level atom is irradiated by a laser with the correct

frequency to drive the transition |g〉 ↔ |e〉, the resulting electromagnetic field is composed of two parts:

An unscattered field Ein which behaves as no atom was present and a scattered field Escat which is the

response of the atom to the incoming field. The positive frequency part of the resulting field therefore

is:

E(+) = E
(+)
in +E

(+)
scat (58a)

with E
(+)
in = Ein ε̂ e

i(kinr−ωint) (58b)

and E
(+)
scat =

k2
in

4πε0r
ei(kinr−ωint) Ŝ− (r̂ × d)× r̂ (58c)

The same decomposition can be done with the magnetic field:

B(+) = B
(+)
in +B

(+)
scat (59a)

with B
(+)
in =

1

c

(
k̂in ×E(+)

in

)
(59b)

and B
(+)
scat =

1

c

(
r̂ ×E(+)

scat

)
(59c)

Of course the analogous formulas hold for the negative frequency parts of the electromagnetic field.

3.1 Energy Distribution

When we try to detect the unscattered electromagnetic field as well as the atomic response, we can’t

directly measure the electric and magnetic field components. The only quantity accessible for us is the

intensity of the light, i.e. the energy per area and time that is transferred into our detector from the light

source (here: laser and atom). In Classical Electrodynamics, the Poynting vector represents the energy

current density of an electromagnetic field. Thus, it is a quantity which verifies in what directions and

how much energy is transported with the electromagnetic wave. We will now motivate a semiclassical

version of the Poynting vector, which is almost identical to its classical counterpart.
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3 SCATTERING OF LIGHT WITH ONE TWO-LEVEL ATOM 3.1 Energy Distribution

3.1.1 Classical Treatment: Poynting Vector

The Poynting vector is defined as [66]:

P =
1

µ0
(E ×B) (60)

Inserting the incident and scattered field components yields:

P =
1

µ0
((Ein +Escat)× (Bin +Bscat)) (61a)

=
1

µ0
(Ein ×Bin +Escat ×Bscat +Ein ×Bscat +Escat ×Bin) (61b)

This can be further simplified when we split up the fields in their complex parts as in eqs. 1212 and take

the time average over one characteristic period T = 2π
ωin

. Since the only time dependence is eiωint or

e−iωint, the time-averaged version of the Poynting vector can be written in a very easy form. We will

demonstrate this for the first term in eq. 61b61b.

1

Tµ0

∫ T

0

Ein ×Bin dt (62a)

=
1

Tµ0

∫ T

0

(
E

(+)
in +E

(−)
in

)
×
(
B

(+)
in +B

(−)
in

)
dt (62b)

=
1

Tµ0

∫ T

0

E(−)
in ×B

(−)
in︸ ︷︷ ︸

∼e−2iωt

+E
(+)
in ×B

(+)
in︸ ︷︷ ︸

∼e2iωt

+ E
(−)
in ×B

(+)
in︸ ︷︷ ︸

no time dependence

+ E
(+)
in ×B

(−)
in︸ ︷︷ ︸

no time dependence

 dt (62c)

The first two parts will give 0 integrated over one period. The other two parts will just give an additional

factor of T which cancels the normalization factor 1
T . With 1

ε0µ0
= c2, we can write

1

Tµ0

∫ T

0

Ein ×Bin dt = 2ε0c
2 Re(E

(−)
in ×B

(+)
in ) (63)

since (E
(+)
in ×B

(−)
in )∗ = E

(−)
in ×B

(+)
in . Thus, we get for the time-averaged Poynting vector:

P̄ = 2ε0c
2 Re(E

(−)
in ×B

(+)
in ) + 2ε0c

2 Re(E
(−)
scat ×B

(+)
scat)

+ 2ε0c
2 Re(E

(−)
in ×B

(+)
scat) + 2ε0c

2 Re(E
(−)
scat ×B

(+)
in ) (64)

Note that this resembles very much eq. 5353: We have one energy part for the unscattered and scattered

fields alone as well as two parts for the interference of these.
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3 SCATTERING OF LIGHT WITH ONE TWO-LEVEL ATOM 3.1 Energy Distribution

3.1.2 Quantum Mechanical Treatment

At least for the purely scattered energy part, we can’t simply take eq. 6464, as the scattered field contains

non-commuting operators. Therefore, we will make a quantum mechanical derivation for the scattered

power, inspired by [1212]. In this derivation, we assume again that the laser is not purely monochromatic

but has a finite spectral width ∆ω.

First, the expectation value for the energy of a single mode of the electromagnetic field is given by

h̄ω 〈â†(t)â(t)〉. Therefore, the power delivered by the unscattered and scattered field can be calculated

via

P (t) =
d

dt

∑
k,λ

h̄ωk,λ 〈â†(t)â(t)〉 (65)

where we sum over all possible wave vectors k and the two contributions from the polarizations λ. â(t)

has already been calculated in chapter 2.2.22.2.2. Thus, we get:

P (t) =
d

dt

∑
k,λ

h̄ωk,λ ( 〈â†(0)â(0)〉︸ ︷︷ ︸
incident energy

−
∫ t

0

g 〈Ŝeg(t′)â(0)〉 e−iωt
′
dt′ −

∫ t

0

g∗ 〈â†(0)Ŝge(t
′)〉 eiωt

′
dt′︸ ︷︷ ︸

interference energy

+

∫ t

0

∫ t

0

|g|2 〈Ŝeg(t′′)Ŝge(t′)〉 eiω(t′−t)eiω(t−t′′)dt′dt′′︸ ︷︷ ︸
scattered energy

) (66)

Note that again, we have contributions from the scattered and unscattered fields as well as an interference

part. However, since we are only looking at the change in energy of the electromagnetic field that is

being induced by the interaction with the atom, the unscattered part vanishes when we calculate the

power. Also, it’s important to keep in mind that a rotating wave approximation has already been done

here, getting rid of the terms that were averaged out in the classical case (see eq. 62c62c). In the following,

we will further analyse the scattered part. To reduce the notation, we will neglect some of the prefactors

and add them again later:

d

dt

(∫ t

0

∫ t

0

|g|2 〈Ŝeg(t′′)Ŝge(t′)〉 eiω(t′−t)eiω(t−t′′)dt′dt′′
)

=|g|2
∫ t

0

d

dt

(∫ t

0

〈Ŝeg(t′′)Ŝge(t′)〉 eiω(t′−t)dt′
)
eiω(t−t′′)dt′′ (67)

+|g|2
∫ t

0

d

dt

(∫ t

0

〈Ŝeg(t′′)Ŝge(t′)〉 eiω(t−t′′)dt′′
)
eiω(t′−t)dt′

This can be evaluated by using the following identity: Let g(t) be an integrable function g: R+
0 → C.
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3 SCATTERING OF LIGHT WITH ONE TWO-LEVEL ATOM 3.1 Energy Distribution

Furthermore let G(t) be the general antiderivative of g(t). Then we have:

d

dt

(∫ t

0

g(t′)dt′
)

(68a)

=
d

dt
(G(t)−G(0)) (68b)

=g(t) (68c)

We can use this to evaluate eq. 6767. Note that in the e-functions, there is also a factor t which has to

be considered when taking the derivative. However, the resulting terms due to these derivatives cancel

each other and we get:

Pscat(t) = |g|2
∫ t

0

〈Ŝeg(t′′)Ŝge(t)〉 eiω(t−t′′)dt′′ + |g|2
∫ t

0

〈Ŝeg(t)Ŝge(t′)〉 eiω(t′−t)dt′ (69)

Substituting t′ → t′′, this can be further simplified:

Pscat(t) = 2Re(

∫ t

0

|g|2 〈Ŝeg(t′′)Ŝge(t)〉 eiω(t−t′′)dt′′) (70)

We will now reintroduce the prefactors and replace g = −
√

ωk,λ

2h̄ε0V
d · ε̂k,λ = −

√
ωk,λ

2h̄ε0V
d cos (π2 − θ) =

−
√

ωk,λ

2h̄ε0V
d sin θ. It is important to remember that θ is the angle between the z-axis and the wave-vector

k. Furthermore, the polarization-vectors ε̂k,λ is always orthogonal to the wave-vector. Therefore, when

we define d to be along the z-direction, we can choose ε̂k,1 such that the angle between d and ε̂k,1 is

π
2 − θ. This way, d · ε̂k,2 = 0 for all θ and we can neglect the polarization sum.

Pscat(t) =
∑
k

ω2
k,λd

2 sin 2θ

ε0V
Re(

∫ t

0

〈Ŝeg(t′′)Ŝge(t)〉 eiω(t−t′′)dt′′) (71)

Next, we can replace the sum by an integral with the appropriate density of modes
∑
k →

V
(2π)3c3∫∞

0

∫ 2π

0

∫ π
0
ω2 sin θ dωdφdθ.

Pscat(t) =
V

(2π)3c3

∫ ∞
0

∫ 2π

0

∫ π

0

dωdφdθ
ω4d2 sin 3θ

ε0V
Re(

∫ t

0

〈Ŝeg(t′′)Ŝge(t)〉 eiω(t−t′′)dt′′) (72a)

=

∫ ∞
0

dω
ω4d2

3π2c3ε0
Re(

∫ t

0

〈Ŝeg(t′′)Ŝge(t)〉 eiω(t−t′′)dt′′) (72b)

For this step, we also used
∫ 2π

0

∫ π
0

sin 3θ dφdθ = 8π
3 . We will now use the same approximation as in
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3 SCATTERING OF LIGHT WITH ONE TWO-LEVEL ATOM 3.1 Energy Distribution

chapter 2.2.22.2.2 to solve the integral
∫ t

0
〈Ŝeg(t′′)Ŝge(t)〉 eiω(t−t′′)dt′′. Hence, we get:

Pscat(t) '
∫ ∞

0

dω
ω4d2

3π2c3ε0
Re(

∫ t

0

〈Ŝeg(t)Ŝge(t)〉 ei(ω−ω0)(t−t′′)dt′′) (73a)

'
∫ ∞

0

dω
ω4d2

3π2c3ε0
Re 〈Ŝeg(t)Ŝge(t)〉 δ(ω − ω0) (73b)

=
ω4

0d
2

3π2c3ε0
Re 〈Ŝeg(t)Ŝge(t)〉 (73c)

Here, we used
∫ t

0
ei(ω−ω0)(t−t′′)dt′′ ' 2πδ(ω − ω0) [1111]. It’s now possible to insert the scattered fields for

the operators (eqs. 5858).

〈E(−)E(+)〉 =
k4

0

(4πε0r)2
〈ŜegŜge〉

∫ 2π

0

∫ π

0

|(r̂ × d)× r̂|2r2 sin θ dφdθ (74a)

=
8πk4

0d
2

3(4πε0)2
〈ŜegŜge〉 (74b)

An integration over a spherical surface has been performed, since the Poynting vector has the dimension

of an energy current density, not a power. Thus, we have to transform eq. 73c73c into an intensity. This is

the same as reversing the surface integral in eq. 7272. The integral in eq. 74a74a can be solved as follows:

|(r̂ × d)× r̂|2 (75a)

=|d− r̂(r̂ · d)|2 (75b)

=d2 − 2(r̂ · d)2 + (r̂ · d)2 (75c)

=d2(1− cos 2θ) (75d)

=d2 sin 2θ (75e)

⇒
∫ 2π

0

∫ π

0

sin 3θ dφdθ =
8π

3
(75f)

where the angle between r̂ and d is again defined as θ and we used the Grassmann-Identity to simplify

the vector-products. Inserting this into eq. 73c73c yields:

Iscat =
3(4πε0)2h̄ω4

0d
2

24π2ε0h̄c3k4
0d

2
Re 〈E(−)E(+)〉 (76a)

= 2ε0c Re 〈E(−)E(+)〉 (76b)

The direction of the energy current density can be obtained by remembering that the Poynting vector is
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3 SCATTERING OF LIGHT WITH ONE TWO-LEVEL ATOM 3.1 Energy Distribution

proportional to E ×B and B̂ = r̂ × Ê:

P̂scat ∼ Ê × B̂ (77a)

= Ê × (r̂ × Ê) (77b)

= r̂ (Ê · Ê)︸ ︷︷ ︸
=1

−Ê (r̂ · Ê)︸ ︷︷ ︸
=0

(77c)

= r̂ (77d)

Thus, our final result for the Poynting vector is:

Pscat = 2ε0c Re 〈E(−)E(+)〉 r̂ (78)

In the next chapter, we will see that this strongly resembles the classical version of the Poynting vector.

3.1.3 “Semiclassical” - Version of the Poynting Vector

Our goal now is to find a general expression for the Poynting vector of the atom-light system. First, we

will rewrite eq. 6363 to show that it can be brought into a similar form as eq. 7878.

Pin = 2ε0c
2 Re(E

(−)
in ×B

(+)
in ) (79a)

= 2ε0c
2 Re(E

(−)
in × (

1

c
k̂ ×E(+)

in )) (79b)

= 2ε0c Re(E
(−)
in × (k̂ ×E(+)

in )) (79c)

= 2ε0c Re(k̂(E
(−)
in E

(+)
in )−E(+)

in (E
(−)
in k̂)︸ ︷︷ ︸
=0

) (79d)

= 2ε0c Re(E
(−)
in E

(+)
in ) k̂ (79e)

Analogous, we get for the classical Poynting vector of the scattered field:

Pscat = 2ε0c Re(E
(−)
scatE

(+)
scat) r̂ (80)

This is the same as the quantum mechanical version (eq. 7878), except that in the classical case, no

expectation value is taken. Thus, to transition from the classical case to the quantum case, we only have

to take the expectation value of the fields, as they have been promoted to operators.
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3 SCATTERING OF LIGHT WITH ONE TWO-LEVEL ATOM 3.2 Analysis without Phase Kick

Now, only the interference parts are missing:

2ε0c
2 Re(E

(−)
in ×B

(+)
scat) = 2ε0c

2 Re(E
(−)
in × (

1

c
r̂ ×E(+)

scat)) (81a)

= 2ε0c Re(r̂(E
(−)
in E

(+)
scat)−E

(+)
scat(E

(−)
in r̂)) (81b)

The same way, we get:

2ε0c
2 Re(E

(−)
scat ×B

(+)
in ) = 2ε0c Re(k̂(E

(−)
scatE

(+)
in )−E(+)

in (E
(−)
scatk̂)) (82)

For r → ∞, the second part in both expressions vanishes, as can be shown by performing brute-force

calculations. Consequently, the interference part can be written as:

Pinter = 2ε0c Re(E
(−)
in E

(+)
scat) r̂ + 2ε0c Re(E

(−)
scatE

(+)
in ) k̂ (83)

Finally, when we include taking expectation values as has been shown in the previous chapter, we get as

our final result:

P = 2ε0c Re 〈E(−)
in E

(+)
in 〉 k̂︸ ︷︷ ︸

=Pin

+ 2ε0c Re 〈E(−)
scatE

(+)
scat〉 r̂︸ ︷︷ ︸

=Pscat

+ 2ε0c Re 〈E(−)
in E

(+)
scat〉 r̂ + 2ε0c Re 〈E(−)

scatE
(+)
in 〉 k̂︸ ︷︷ ︸

=Pinter

(84)

Note that this is the same result as for the correlation function in chapter 2.4.12.4.1. We added only the

prefactor 2ε0c, through which the Poynting vector also gets the correct units of an energy current density:

[ε0cE
2] =

As

Vm

m

s

V2

m2
=

J

s m2
(85)

Further on, the directions in which the energy current density flows has been included as unit vectors.

These have been taken from the classical Poynting vectors of the unscattered and scattered electromag-

netic fields. This Poynting vector will be our starting point for every energy analysis we perform in this

thesis.

3.2 Analysis without Phase Kick

Now that we have taken a look at the correct Poynting vectors, we can investigate the energy conservation

in a system consisting of one atom which is being excited by a plane laser beam. However, we will neglect

30



3 SCATTERING OF LIGHT WITH ONE TWO-LEVEL ATOM 3.2 Analysis without Phase Kick

loss channels like momentum transfer to the atom by assuming these to give no contribution in a time

average. Furthermore, we will analyse the detector signal in forward direction and investigate what

happens when an additional phase kick is introduced to the scattered field.

3.2.1 Energy Conservation

We start by examining if energy conservation holds. The main idea is to put the whole system into a

sphere, such that it is totally isolated from any outside influences. Then, the power flowing into the

sphere has to equal the one leaving the sphere for energy conservation to hold. If both contributions

didn’t cancel out to zero, there had to be an energy source inside the sphere which we didn’t take into

account. Otherwise, energy would have been created from nothing.

The Poynting vector for the scattering of light by a two level atom has already been derived in the

previous chapter. Consequently, we get for the incident field

Pin = 2ε0c Re 〈E(−)
in E

(+)
in 〉 k̂ (86a)

= 2ε0cE
2
in k̂ (86b)

where we used eqs. 5858. The flux out of an imaginary sphere with radius r and the atom’s position as

the center can now be calculated as follows:

Win =

∮
Pin · dA (87a)

= 2ε0cE
2
in

∫ 2π

0

∫ π

0

k̂ · r̂ r2 sin θ dφdθ (87b)

= 2ε0cE
2
inkr

2

∫ 2π

0

∫ π

0

cosφ sin 2θ dφdθ (87c)

= 0 (87d)

Here, we defined k = (k, 0, 0) and used r̂ = (cosφ sin θ, sinφ sin θ, cos θ). The result is of course expected,

since for a plane wave that goes through a sphere, what comes in has to come out again. For the scattered

part, we get (with eq. 7575 and eq. 41c41c):

Pscat = 2ε0c Re 〈E(−)
scatE

(+)
scat〉 r̂ (88a)

= 2ε0c
k4

0

16π2ε20r
2
〈Ŝ+Ŝ−〉 |d− r̂(r̂ · d)|2 r̂ (88b)

=
ω0k

3
0d

2

8π2ε0r2
ρ̂ee sin 2θ r̂ (88c)

=
3

8πr2
h̄ω0γρ̂ee sin 2θ r̂ (88d)
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Thus, the flux is:

Wscat =

∮
Pscat · dA (89a)

=
3

8πr2
h̄ω0γρ̂ee

∫ 2π

0

∫ π

0

r2 sin 3θ r̂ · r̂ dφdθ (89b)

= h̄ω0γρ̂ee (89c)

This is the well known energy scattering rate of a two level atom. Moreover, the contribution is positive,

since the atom is a source of electromagnetic waves which start at the atom’s position and leave the

sphere. Now, the energy taken out of the incident field is represented by the interference part. For the

Poynting vector, we get:

Pinter = 2ε0c Re 〈E(−)
in E

(+)
scat〉 r̂ + 2ε0c Re 〈E(−)

scatE
(+)
in 〉 k̂ (90a)

= 2ε0c
E0k

2
0

4πε0r
ε̂ · ((r̂ × d)× r̂) Re

(
ei(k0r−k0r) 〈Ŝ−〉 r̂

)
+ 2ε0c

E0k
2
0

4πε0r
ε̂ · ((r̂ × d)× r̂) Re

(
e−i(k0r−k0r) 〈Ŝ+〉 k̂

)
(90b)

=
E0k0ω0

πr
ε̂ · ((r̂ × d)× r̂) Re

(
ei(k0r−k0r)ρ̂eg r̂ + e−i(k0r−k0r)ρ̂ge k̂

)
(90c)

Calculating the flux of this expression is quite difficult, but we can do this numerically in Mathematica.

For r →∞, our result then is:

Winter = lim
r→∞

∮
Pinter · dA (91a)

= 2h̄ω0ΩIm(ρ̂eg) (91b)

= 2h̄ω0Ω(− γ

2Ω
)ρ̂ee (91c)

= −h̄ω0γρ̂ee (91d)

And thus, we get for the total flux entering and leaving the closed sphere with radius r:

W =

∮
P · dA (92a)

=

∮
(Pin + Pscat + Pinter) · dA (92b)

= 0 + h̄ω0γρ̂ee − h̄ω0γρ̂ee (92c)

= 0 (92d)
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As we see, the energy is conserved. Therefore, the energy used to create the scattered field has been

taken directly from the incident field. The atom scatters some of the ingoing wave into radial direction,

as we already expected.

3.2.2 Detected Signal

Up next we have a look at the detected signal of the total field. As can be easily obtained, the scattered

part Pscat (eq. 88d88d) has the form of a positive Lorentzian in dependence of the detuning ∆. This is a

result of the finite emission time or, better said, of the fact that the decay time is finite and distributed

exponentially, leading to a Lorentzian spectrum. Furthermore, the energy distribution only depends on

the angle θ, what originates from the fact that a) a dipole doesn’t radiate energy along its oscillation

axis and b) emits most energy into the plane orthogonal to its oscillation.

Figure 6: Norm of Pscat in different directions and with different detunings ∆. While changing ∆, we get a

Lorentz profile. Changing θ only results into altering the amplitude of the signal due to the factor sin 3θ.

The interference part Pinter is much more complicated. For instance, for θ = π
2 , we get for the differential

flux Pinter · r̂ with r̂ the unit vector in radial direction of the sphere:

Figure 7: Detected signal of the interference part for θ = π
2

and different values of ∆ in dependence of φ. For

large values of φ, we get rapid oscillations. Varying ∆ only changes the signal around φ = 0.

Thus, for φ ' 0, we have a well defined behaviour which evolves to strong oscillations for larger values

of φ. This can be explained quite intuitively in our picture, since φ = 0 is the propagation direction of

the incident wave. Therefore, small changes in φ will only result in small changes in the phase difference

between incident and scattered wave. But for larger values of φ, these phase differences will become

big for small deviations of φ, hence the signal starts oscillating very rapidly. Also, ∆ changes the flux

in forward direction. Because of this, we will investigate the signal detected by a pointlike detector in
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3 SCATTERING OF LIGHT WITH ONE TWO-LEVEL ATOM 3.3 Analysis with Phase Kick

forward direction more closely:

Figure 8: Detected signal of the interference part in forward direction for a pointlike detector. Rather unexpected,

we get a Fano profile and not an Lorentzian absorption profile as in standard spectroscopy experiments.

Despite expectation, this is not a negative Lorentz profile. Instead, we have a Fano profile what can be

seen even easier by rearranging eq. 90c90c for the case φ = 0 and θ = π
2 .

Pscat

∣∣∣∣
(φ=0, θ=π

2 )

= − k0

πr
h̄ω0ΩRe(ρ̂eg) (93a)

= −4h̄ω0k0

πr

Ω2∆

γ2 + 4∆2 + 8Ω2
(93b)

Further, the contribution in forward direction depends on the real-part of ρ̂eg, which is responsible for

the refraction of light in optical physics. As a reminder, the imaginary part of ρ̂eg leads to absorption of

light by a given medium [1010]. Therefore, we are scanning the refractive index of the atom by comparing

the scattered light in forward direction with an unscattered wave. The phase difference between the two

leads to the observed profile. However, a real detector has a finite detection size and thus, we actually

have to integrate over a certain area. It can be shown that doing this will reintroduce the well known

Lorentzian absorption line [1818]. In chapter 44, we will take a similar approach and transition from one

atom to many atoms, what will also result in recovering the expected negative Lorentz profile.

3.3 Analysis with Phase Kick

Next, we will give the scattered field an additional phase kick φk ∈ [0, 2π), i.e. E
(+)
scat =

k2
0

4πε0r
Ŝ−e

i(k0r+φk)

(r̂ × d) × r̂. As we will see, with this phase kick we are able to control the line shape of the detected

signal.

3.3.1 Energy Conservation

Introducing the phase kick doesn’t change anything at Pin and Pscat, as the phase information is lost

in these expressions. But the interference part changes and we have to calculate the total flux anew.
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Evaluating this numerically, we get:

Winter = 2ωΩh̄
(

cosφkIm(ρ̂eg) + sinφkRe(ρ̂eg)
)

(94a)

⇒ W = h̄ω0ρ̂ee (γ − γ cosφk + 2∆ sinφk) (94b)

For φk → 0, we have energy conservation but for φk 6= 0, energy is not conserved. In the next chapter,

we will show that introducing this phase kick allows us to change the detected line shape in forward

direction. However, introducing a phase kick will lead to a breaking of energy conservation for the many

atom scenario, too. A more thorough analysis concerning the energy conservation in this case will be

done in chapter 6.46.4.

3.3.2 Detected Signal in Forward Direction

As already mentioned, introducing a phase kick enables us to change the line shape of the detected

signal. Since only the interference part changes, we’ll blend out the incident and scattered part in this

analysis. For the detected signal in forward direction, we therefore get:

Pscat

∣∣∣∣
(φ=0, θ=π

2 )

= − h̄ω0k0

πr
Ω
(

cosφkRe(ρ̂eg)− sinφkIm(ρ̂eg)
)

(95a)

=
h̄ω0k0

2πr
ρ̂ee
(
γ cosφk + 2∆ sinφk

)
(95b)

This is similar to the result we obtained for the energy conservation. Note that for φk → 0, we get the

old result eq. 93b93b. Accordingly, by giving the scattered light an additional phase kick, we get a mixing of

the real and imaginary part of ρ̂eg. This gives us the possibility to control the line shape of the detected

signal (in dependence of ∆):

Figure 9: Detected signal of the interference part in forward direction with an additional phase kick φk. Depending

on the value of φk, we can transform between Lorentz and Fano profiles.

We will analyse this further in the coming chapters. But first, the transition to many atoms will be done

as this allows us to simplify our formalism considerably.
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4 Generalization for Many Two-Level Atoms

We now generalize our formalism for a gas consisting of many identical two-level atoms. This

will allow us to motivate an approximation which tremendously simplifies all the calculations

concerning energy conservation. As a consequence, even more complex cases like excitation

by laser pulses can be analysed. Furthermore, it’s possible to show that the absorption line can

be altered to a Fano profile by introducing a phase kick onto the atomic answer. Additionally,

this formalism can be extended to three-level systems, in which the phase kick can be modelled

with a second laser.

4.1 Transition to Many Two-Level Atoms

First, we take a look at the case of two atoms. An obvious main difference to the case of one atom

is that, since both atoms don’t occupy the same position in space, they have different path lengths to

the detector. Thus, depending on the position of the detector, the two emitted waves will either add

constructively or destructively (see fig. 1010). We define the resulting phase-difference to be “negative”.

Figure 10: Two atoms (red) both emitting a spherical wave (dark red) which are detected at an detector (end of

arrows). It is easy to see that both waves arrive with a phase-difference which depends on the detector position.

Another difference is that both atoms start emitting light at different times. As the incoming wave hits

one of the atoms first, this atom will have already emitted light for some time before the second one gets

excited (see fig. 1111). This way, a “positive” phase-difference has to be factored in as well. Note that the

terms “positive” and “negative” were chosen, since both contributions act in different directions.

As a starting point, let us still assume that we have only two atoms which are irradiated by a laser

beam. First, we define the origin to be the center of mass of all atoms, e.g. in this case, the center of

mass of the two atoms. The main idea now is to compare the two waves emitted by the atoms with

an “imaginary” wave which comes from the origin. This way, we can introduce an effective field that

replaces the ordinary superposition of the two scattered fields.

Let’s begin with comparing the wave of an atom positioned outside the origin with a wave which

originates from the origin. Since the atom and the origin have different distances to the detector, we get

36



4 GENERALIZATION FOR MANY TWO-LEVEL ATOMS 4.1 Transition to Many Two-Level Atoms

Figure 11: Two atoms (red) are being excited by a resonant laser beam (blue). Atom 1 starts radiating first (left),

as the wave didn’t reach atom 2 yet. Only a finite time later, the laser beam hits atom 2 and it starts radiating

as well (right).

the following phase-difference (for the setup, see fig. 1212):

R = r − rA (distance atom↔ detector) (96a)

⇒ ∆φr ∼ R− r (96b)

= |r − rA| − |r| (96c)

Using a Taylor-Expansion in rA
r � 1, we get |r − rA| ' r − r̂rA and thus:

∆φr ∼ −r̂rA (97)

Figure 12: Configuration of our setup. rA is the vector pointing from the origin to the atom, r is the vector

connecting the origin with the detector and k̂0 is the wave vector of the incident laser beam. Moreover, t′ is the

time of emission of the atom and t the time of emission of the origin. Further, we detect the signals at the fixed

time tr.

As already stated, since the ingoing wave doesn’t hit the atoms simultaneously, a second phase-difference

has to be considered. This one only depends on the distance in direction of the wave-vector of the incident
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laser beam k̂0. Therefore, the phase-difference is determined by the time-difference the laser beam needs

to get from the atom to the origin (or vice versa).

∆φt ∼ k̂0rA (98)

Consequently, the total phase difference between atom and origin is:

∆φ ∼ (k̂0 − r̂)rA (99)

We will now implement this into our theory. To do so, we have to go back to eq. 3333 and push the

atom out of the origin. Thus, we have to replace r → r − rA with rA the atom’s position. Therefore,

a factor e−ikrA enters our formula, which represents the previously discussed phase-difference due to

the distance between atom and detector. Furthermore, the Rabi-Frequency is evaluated at the atom’s

position and thus gets an extra phase factor eik0rA [1111]. This corresponds to the already discussed

phase-factor resulting from the differences in excitation time. Note that since the atom sat in the origin

in chapter 2.2.22.2.2, these new phase-factors just equalled 1 (rA = 0). This results in:

E
(+)
scat(r, tr) = η Ŝge(tr)J−(tr)

∫ ∞
0

∫ 2π

0

∫ π

0

ω3 sin θ
(
d− (d · k̂)k̂

)
eik(r−rA) eik0rA dωdφdθ (100a)

= 2πηω3
0 Ŝge(tr)

∫ 2π

0

∫ π

0

sin θ
(
d− (d · k̂)k̂

)
eik0k̂r eik0(k̂0−k̂)rA dφdθ (100b)

with η = i
(2π)3c32ε0

and we already evaluated J−(tr) as in chapter 2.2.22.2.2. Note that this expression

resembles the scattered field of an atom sitting in the origin, modified by an additional phase factor

eik0(k̂0−k̂)rA in the integral. Therefore, if we have N atoms with ri the position of atom i, the total

scattered field can be rewritten as follows:

E
(+)
scat = E

(+)
scat,atom 1 +E

(+)
scat,atom 2 + ...+E

(+)
scat,atom N (101a)

= 2πηω3
0 Ŝge(tr)

∫ 2π

0

∫ π

0

sin θ
(
d− (d · k̂)k̂

)
eik0k̂r

(
N∑
i=1

eik0(k̂0−k̂)ri

)
dφdθ (101b)

Accordingly, we are able to exchange the sum over all scattered fields with an effective field that resembles

the scattered field of one atom sitting at the origin, corrected by a factor
∑N
i=1 e

ik0(k̂0−k̂)ri which accounts

for the superposition of waves with different phases.

4.2 Evaluation of the Sum over all Atoms

Our next task is to evaluate the correction factor
∑N
i=1 e

ik0(k̂0−k̂)ri . We will use two ways to do so:

First, we evaluate the sum numerically with randomly determined atom positions. Thereafter, we’ll give
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a statistical argument for the found evaluation. At the end of this chapter, we’ll eventually derive the

effective scattered field.

4.2.1 Numerical Analysis

Our first step in evaluating
∑N
i=1 e

ik0(k̂0−k̂)ri is to do so numerically. Therefore, a program in Mathe-

matica was written which:

• Creates an array of randomly placed atoms in a box with measures (100× 100× 100) [ 1
k3

0
].

• Plots the distribution in a 3D-Graph.

• Evaluates
∑N
i=1 e

ik0(k̂0−k̂)ri for a given θ, the randomly created atom positions and all possible

discrete values of φ with a distance of 2π
1000 between two succeeding angles.

• Creates a polar-plot of the real part, such that the result of the sum can be easily seen for every φ

at once.

Here, we will only state the results. The code to this program can be found in Appendix C.1C.1. For the

wave vector k0, the test value k0 = 10 was chosen. Note that it’s important that max(k0 · rA) is at least

> 2π, such that we have a sum of rapidly oscillating exponentials. The difference can be seen quite good

for the case of k0 = 1 and k0 = 10, where we put 100 atoms into the box:

Figure 13: Evaluation of the sum for 100 atoms with (top) k0 = 1 and (bottom) k0 = 10. The left side is a plot

of the corresponding atom distribution. The right side is a polar plot of the evaluated sum, where we see large

values around the forward direction φ = 0.

We will now take a look at the result for N = 10, 100, 1000, 10000 atoms:
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Figure 14: Polar plot in φ of the sum with (top left) N = 10 (top right) N = 100 (bottom left) N = 1000 and

(bottom right) N = 10000 atoms.

It’s easy to see that, even for low atom numbers, the forward direction dominates in the scattering

characteristic. Thus, the factor
∑N
i=1 e

ik0(k̂0−k̂)ri leads to enhanced forward scattering and the resulting,

effective wave will be a plane wave parallel to the incident laser beam which excites the atoms. This is

also very similar to the case of a very fine grating (Fraunhofer approximation):

Whenever we calculate the diffraction pattern of an object, we take its Fourier transform. In the case

of a fine grating, most of the incident intensity will be scattered into the forward direction (0. maximum).

Note also that the sum
∑N
i=1 e

ik0(k̂0−k̂)ri looks quite similar to some definitions of the delta function.

The only difference are the randomly distributed atom positions. But this randomness only enhances

the convergence to a delta function as will be shown in the next chapter.

Another way to see this is to keep in mind that we have a sum of many rapid oscillating exponentials,

which will annihilate each other but for the case of k̂0 − k̂ = 0 where the sum just equals to N . Of

course, all these explanations are essentially different views of the same phenomena when summing over

many exponentials with different phases.

The sum can also be evaluated for different values of θ. This has been done in the case of N = 1000

atoms for θ = π
4 and θ = π

6 :
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Figure 15: Polar plot in φ of the sum with (left) θ = π
2

(middle) θ = π
4

and (right) θ = π
6

.

As we see, compared to the forward scattering at θ = π
2 , for other values of θ we get only weak scattering.

4.2.2 Evaluation using the Central Limit Theorem

We will now choose another ansatz for evaluating the expression
∑N
i=1 e

ik0(k̂0−k̂)ri to emphasize the

results of the previous chapter. First, we note that fields are real quantities, therefore we are only

interested in the real part of the sum, i.e.
∑N
i=1 cos (k0(k̂0 − k̂)ri). This is similar to a sum of cosines

with random phases which lie in the interval [0, 2π). Accordingly, we model this sum by approximating

N∑
i=1

cos (k0(k̂0 − k̂)ri) '
N∑
i=1

cos (aϕi) (102)

with a prefactor a ∈ R which determines the angular velocity and ϕ ∈ [0, 2π] an evenly distributed

random variable. For a high enough value of N, we have a lot of atoms with different phase shifts varying

over several periods of the cosine. Since there is no real preferred position in a gas, all possible phase

shifts will be distributed almost evenly. Of course, this won’t be a perfect even distribution, but for our

case approximating it as such suffices for the analysis.

To begin with, we evaluate
∑N
i=1 cos (k0(k̂0 − k̂)ri) at its maximum k̂0 − k̂ = 0:

max(

N∑
i=1

cos (k0(k̂0 − k̂)ri)) =

N∑
i=1

cos (0) (103a)

=

N∑
i=1

1 (103b)

= N (103c)

This is the forward scattering peak we observed in the previous chapter. We will now assume that

k̂0 − k̂ 6= 0 and use eq. 102102. Since the phase ϕ is a random variable, the values of cos (aϕ) will also be

randomly distributed. The expectation value can be calculated by means of the “Law of the unconscious

statistician” [1919]
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〈cos (aϕ)〉 =

∫ 2π

0

p(ϕ) cos (aϕ) dϕ (104)

=
1

2π

∫ 2π

0

cos (aϕ) dϕ (105)

=
sin (2πa)

2πa
(106)

where p(ϕ) = 1
2π is the probabiliy distribution of ϕ. Consequently, the expectation value is a sinc-

function which heavily depends on the prefactor a.

Figure 16: Expectation value of cos (aϕ) for different values of a.

For |a| < 1, the expectation values of the cosine takes on quite large values. For a → 0, it converges,

as expected, to 1. We will see in the following that the expectation value of
∑N
i=1 cos (aϕi) is just the

sum of the individual expectation values 〈cos (aϕi)〉. Thus, for small values of a, the sum will evaluate

to high values ∼ N . We observed this effect already in the previous chapter by choosing k0 too small.

Furthermore, for high values of a, the sum will give a result near 0, at least compared to the maximum

value N (for k̂0 − k̂ = 0).

Now, we will make use of one of the most important theorems in statistics: The central limit theorem.

It roughly states the following:

“If a random variable is the sum of many independent random variables, then it has a Gaus-

sian distribution.” [2020]

The number of particles in a gas is roughly estimated of the order of Avogadro’s number 6.022 · 1023

and interactions between atoms are being neglected in our theory (ideal gas approximation). Therefore,

we have a large sum of independent randomly distributed cosine functions and the central limit theorem

can be applied. As a consequence, the result of f(a) =
∑N
i=1 cos (aϕi) will be Gaussian distributed with
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a mean and a standard deviation given by [2020]

〈f(a)〉 = N 〈cos (aϕ)〉 (107a)

= N
sin (2πa)

2πa
(107b)

σf =
√
Nσcos (aϕ) (107c)

≤
√
N (107d)

with σcos (aϕ) the standard deviation of a single cosine function. Since cos (aϕ) ∈ [−1, 1], the estimation

σcos (aϕ) ≤ 1 was made. For high enough a, we thus get 〈f(a)〉
N ' 0 since 〈cos (aϕ)〉 � 1 and

σf
N '

1√
N

.

Long story short, when we evaluate
∑N
i=1 e

ik0(k̂0−k̂)ri for k̂0 − k̂ 6= 0, our result will be Gaussian

distributed with a mean value and standard deviation which are small compared to the result we get for

k̂0 − k̂ = 0 (as long as N is large). So, as a final result, we can state

∞∑
i=1

eik0(k̂0−k̂)ri =

∞, if k̂0 − k̂ = 0

0, otherwise
(108)

where we formally set N → ∞. As already seen in the previous chapter, the sum boosts scattering in

forward direction. Because of this, we will neglect all other directions in the next chapter and derive the

effective field under the condition that all emitted light is radiated along the direction of the incident

laser beam. Of course, for this result, many approximations were needed, e.g. r →∞, N →∞ and that

our atoms form an ideal gas. This should always be kept in mind since our result is only valid under

these conditions.

As a demonstration of the central limit theorem,
∑N
i=1 cos (ϕi) was evaluated numerically with Math-

ematica for some example cases (see fig. 1717, for the code, see Appendix C.2C.2).
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Figure 17: Histograms for the results of
∑N
i=1 cos (aϕi) for different numbers of atoms N . The results have been

normalized to N, i.e. the x-axis values have already been divided by N. (top left) N=10, 100000 sample values

(top right) N=100, 100000 sample values (bottom left) N=1000, 10000 sample values (bottom right) N=10000,

10000 sample values. As expected, in all cases we get some kind of gaussian distribution with expectation value

' 0 and a standard deviation which becomes smaller with growing N .

4.2.3 Determining the Effective Field

We will now return to eq. 101b101b of the effective field:

E
(+)
eff (tr) = 2πηω3

0 Ŝge(tr)

∫ 2π

0

∫ π

0

sin θ
(
d− (d · k̂)k̂

)
eik0k̂r

(
N∑
i=1

eik0(k̂0−k̂)ri

)
dφdθ (109)

The integral just measures which waves with general wave-vectors k contribute to the scattered field at

position r. Here, k̂ is the direction of the general waves. Evaluating this in chapter 2.2.22.2.2 lead us to

the result that a two-level atom scatters light spherical symmetrically in all directions. For the many

atom case, we got exactly such a field with the exception that we additionally obtained a dirac delta-like

prefactor which scatters all light in the forward direction. Therefore, we can approximate:

∫ 2π

0

∫ π

0

sin θ
(
d− (d · k̂)k̂

)
eik0k̂r

(
N∑
i=1

eik0(k̂0−k̂)ri

)
dφdθ (110a)

'
∫ 2π

0

∫ π

0

sin 3θ dφdθ eik0r
(
d− (d · k̂0)k̂0

)
(110b)

where we still perform the surface-integral over the dipole charateristic, such that all initially spherically

scattered waves are summed up in forward direction. This can also be done formally by approximating∑N
i=1 e

ik0(k̂0−k̂)ri ' 8π
3 δ(k̂0 − k̂). Evaluating this expression further as in chapter 2.2.22.2.2 and using
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d− (d · k̂0)k̂0 = d · ε, we finally get:

E
(+)
eff (tr) = Ŝge(tr)

k2
0

4πε0︸ ︷︷ ︸
prefactors of single scatterer

· i
4

3
k0de

ik0rε (111a)

= i
k3

0d

3πε0
Ŝ−(tr)e

i(k0r−ω0tr)ε (111b)

As we can see, the endresult is a plane wave with a correction factor compared to our initial result of a

single scatterer. We’ll see in the next chapter that this result gives us again energy conservation if the

system is closed and no internal loss channels like excitation of kinetic energy are existent.

4.3 Detected Signal in Forward Direction

4.3.1 Without Phase Kick

First, we’ll evaluate the detector signal. The Poynting vector without the unscattered field is given by:

Pscat + Pinter = 2ε0c Re 〈E(−)
scatE

(+)
scat〉 k̂ + 2ε0c

(
Re 〈E(−)

in E
(+)
scat〉+ Re 〈E(−)

scatE
(+)
in 〉

)
k̂ (112)

The scattered part evaluates to

Pscat =
2k6

0d
2c

(3π)2ε0
Re 〈Ŝ+Ŝ−〉 k̂ (113a)

=
2

3π
k2

0h̄ω0γρ̂ee k̂ (113b)

=
8π

3

h̄ω0

λ2
0

γρ̂ee k̂ (113c)

where we used eq. 41c41c. Equivalently, the interference part becomes:

Pinter =
2ε0cEink

3
0d

3πε0
Re(i 〈Ŝ−〉 − i 〈Ŝ+〉) k̂ (114a)

=
2ε0cEink

3
0d

3πε0

(
− 2Im(ρ̂eg)

)
k̂ (114b)

=
2ε0cEink

3
0dγ

3πε0Ω
ρ̂ee k̂ (114c)

= − 2

3π
k2

0h̄ω0γρ̂ee k̂ (114d)

Here, we used eq. 4141 and eq. 4848. Note that the total energy rate per surface area of the scattered and

interference part can just be calculated by taking the norm of the respective Poynting vectors. Before

the plane wave approximation, we had to evaluate a quite complex surface integral.

45



4 GENERALIZATION FOR MANY TWO-LEVEL ATOMS 4.3 Detected Signal in Forward Direction

The scattered energy density rate per surface area has the following dependence on the detuning ∆:

Figure 18: Detected energy density current of the scattered field in forward direction.

We get a Lorentzian profile for the scattered light. This is expected, since due to the finite emission

time, the detected signal should be a Lorentzian (see chapter 2.4.22.4.2). Also, on resonance, the emission is

highest and for greater detunings ∆, it slowly decays to 0 and the light won’t excite the atom anymore.

Equivalently, the interference term has now the shape of a negative Lorentzian, what resembles the

normal absorption profile we get when doing spectroscopy. In chapter 3.2.23.2.2, the interference part yielded

a Fano profile for a pointlike detector in forward direction. Furthermore, we stated that when the signal

is integrated over a certain area, the expected negative Lorentzian returns. Here, we have the same

effect, but instead of integrating over a certain detector area, we chose to increase the number of atoms

tremendously.

Of course, when we add the scattered and interference parts together, they add up to 0. Thus, the

energy in the system is conserved. Since all light is scattered in forward direction, this would mean that

on a time average, we would only detect seemingly unscattered light. However, in a real experiment,

there is also light getting scattered in different directions than the forward direction, and an absorption

profile emerges in forward direction.
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Figure 19: Detected energy density current of the interference between incident and scattererd field in forward

direction.

4.3.2 With Phase Kick

We now add a phase kick φk ∈ [0, 2π) to the scattered field:

E
(+)
scat(tr) = i

k3
0d

3πε0
Ŝ−(tr)e

i(k0r−ω0tr+φk)ε (115)

This changes nothing at Pscat, since the phase information is lost due to the scalar product 〈E(−)
scatE

(+)
scat〉.

However, Pinter has to be calculated anew.

Pinter =
2ε0cEink

3
0d

3πε0
Re(i 〈Ŝ−〉 eiφk − i 〈Ŝ+〉 e−iφk) k̂ (116a)

= −4cEink
3
0d

3π
(Im(ρ̂eg) cosφk + Re(ρ̂eg) sinφk) k̂ (116b)

= −2cEink
3
0d

3π

(
− γ

Ω
ρ̂ee cosφk +

2∆

Ω
ρ̂ee sinφk

)
k̂ (116c)

=
2ch̄k3

0

3π
(−γρ̂ee cosφk + 2∆ρ̂ee sinφk) k̂ (116d)

=
2

3π
k2

0h̄ω0ρ̂ee (−γ cosφk + 2∆ sinφk) k̂ (116e)

Note that we see here very nicely that giving the scattered field a phase kick eiφk is the same as giving

the coherences a phase kick ρ̂eg → ρ̂ege
iφk . We then get for the total Poynting vector:

P = Pscat + Pinter (117a)

=
2

3π
k2

0h̄ω0ρ̂ee (γ − γ cosφk + 2∆ sinφk) k̂ (117b)

For φk → 0, we obtain the results from the previous chapter: Lorentzian profiles and energy conservation.
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But for φk 6= 0, energy conservation is broken and the detected signal changes depending on φk. We will

analyse the detected signal by investigating the dependence of Pinter on ∆ for several values of φk, since

the scattered part only gives a constant offset. Remember that the interference part of the Poynting

vector reflects the amount of power the atom adds to the incident field. For instance, for φk = 0, we

have a negative Lorentzian and thus, energy is taken out of the incident field and reemitted by scattering.

Figure 20: Norm of Pinter in dependancy of ∆ for several values of φk. (left) φk = π
2

(middle) φk = π (right)

φk = 3π
2

. Changing the phase kick obviously changes the interaction between the incident light and the atom,

since we can switch between positive/negative Fano and Lorentz-lines by adjusting φk accordingly.

This is the same result we obtained in chapter 3.3.23.3.2: Introducing a phase kick φk leads to the possibility

of changing the detected signal. In this specific case, we can adjust the ordinary negative Lorentzian

profile to Fano-lines or even a positive Lorentzian. However, for φk 6= 0, energy conservation doesn’t

hold anymore, since Pscat + Pinter 6= 0 (as was also observed in chapter 3.3.13.3.1).
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5 Transition from c.w. to Pulsed Laser

We will now transition from a continuous laser wave to laser pulses. In the previous chapters,

we used continuous waves to excite the atom, i.e. it absorbed and emitted light constantly.

Now, however, the atom will get “kicked” into the excited state by the laser pulse and subse-

quently decay via spontaneous emission back to the ground state. The goal of this chapter is

to analyse once more the energy distribution of the laser-atom system during their interac-

tion. But before we can start, we will first have to look whether the previously used Poynting

vector is still valid or not. Finally, it will be demonstrated that by giving the scattered field

an additional phase kick, the same detector signals as in chapter 4.3.24.3.2 can be reproduced.

5.1 Revisiting the Poynting Vector

As a pulse shape, we will use a Gaussian envelope:

Ein(t) = Ein e
− (kinr−ωint)

2

2σ2 (118a)

⇒ E
(+)
in = Ein ε̂ e

i(kinr−ωint)e−
(kinr−ωint)

2

2σ2 (118b)

This way, we have a carrier signal ei(kinr−ωint) and a Gaussian envelope e−
(kinr−ωint)

2

2σ2 which are moving

together with the same velocity. Our final signal therefore is a plane wave with frequency ωin modified

by a Gaussian envelope, propagating through space:

Figure 21: Laser pulse propagating along the x-direction at earlier times (blue) and later times (red). Since group

- and phase velocity are equal, the shape of the resulting pulse stays constant.

Note that σ is a unitless parameter with which we can alter the width of the pulse. This will be discussed

more precisely in the next chapter.
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5.1.1 Verification of the Rotating Wave Approximation

When we first derived the Poynting vector in chapter 33, we were able to simplify our expression in

the classical as well as in the quantum mechanical calculation due to the rotating wave approximation.

This way, terms like Re 〈E(−)
in E

(−)
in 〉 could be neglected as they were rapidly oscillating and thus didn’t

contribute to the Poynting vector. Furthermore, since the interaction between atom and laser field has

no periodic time dependence anymore, we won’t calculate the time-averaged Poynting vector of one

characteristic period. Rather, we will integrate the Poynting vector over the whole interaction and decay

time, i.e. from 0 to ∞, such that we gain a measure for the total energy of the atom-laser system.

We will perform this integral schematically to motivate that the rotating wave approximation still

holds. To simplify the integral, we set w.l.o.g. r = 0:

Re

∫ ∞
0

〈E(−)
in E

(−)
in 〉 dt ∼ 2 Re

∫ ∞
0

e2iωint)e−
(ωint)

2

σ2 dt (119a)

=
E2
in

√
πσ

ωin
e−σ

2

(119b)

Re

∫ ∞
0

〈E(−)
in E

(+)
in 〉 dt ∼ 2 Re

∫ ∞
0

e−
(ωint)

2

σ2 dt (119c)

=
E2
in

√
πσ

ωin
(119d)

It’s easy to see that we get a damping factor e−σ
2

from the oscillating term e2i(kinr−ωint). This means

that the oscillations heavily damp the result of the integral depending on σ. Thus, if we choose σ large

enough, we can still assume that the rotating wave approximation holds. Note that the peak width

depends on σ, for instance the FWHM in time domain is given by:

twidth =
σ

ωin

√
8 ln 2 (120)

Therefore, if we place our detector at a certain location in space where the laser pulse will pass, the

detected width of the pulse equals twidth as we only measure the variance in time of the pulse. Conse-

quently, the width depends on σ as illustrated in fig. 2222:

Figure 22: Pulse seen from a certain position in space dependent on time. The values for σ are (left) σ = 5,

(middle) σ = 20 and (right) σ = 60.
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5.1.2 Calculation of the Density Matrix Elements

The equations of motion for the density matrix elements are the same as in chapter 2.3.32.3.3. However,

we have to take into account that the Rabi-Frequency now depends on time, i.e. Ω(t) ∼ Ein(t) ∼

e−
(kinr−ωint)

2

2σ2 . Due to that, we have to solve the partial differential equations numerically, e.g. in Math-

ematica as in Appendix B.2B.2 or D.2D.2. Doing this with the example values γ = 1
200 [a.u.], Ω = 2 [γ],

ω = 200 [γ], ∆ = 0 and σ = 50 (→ twidth ' 1
2 [γ−1]), we obtain the results illustrated in fig. 2323. The

units are given in multiples of the decay rate γ, as it is the most characteristic time-giving quantity in

our experimental setup. Moreover, the Rabi frequency Ω can be decomposed into Ein · dh̄ , such that

whenever we want to change the value of Ω, we do it by adjusting Ein accordingly (i.e. d remains

constant). Sometimes, ∆ will be given in units of Ω (see chapter 66). Furthermore, one can adjust at

which time the pulse hits the atom by changing the value of tp = kr
ω . Note that it should be chosen such

that the pulse doesn’t excite the atom before t = 0, as the boundary conditions at t = 0 for the density

matrix elements would ruin the result.

Figure 23: Solutions for the density matrix elements with a pulsed laser. (top left) ρ̂ee, (top right) Re(ρ̂ee) and

(bottom) Im(ρ̂ee).

These results correspond very well to a laser pulse which “kicks” the atoms into the excited state, as

ρ̂ee grows very fast when the laser hits the atoms. Afterwards, as soon as the pulse has passed, we can

observe spontaneous decay to come into action. Note that the real part of ρ̂eg is zero. This is very

similar to our stationary result of the continuous wave scenario in chapter 2.3.32.3.3, where we found that

Re(ρ̂eg) ∼ ∆.
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5.2 Energy Conservation

We will now analyse if energy is conserved in a system where two-level atoms are being excited by a laser

pulse with detuning ∆. To do this, we first calculate the expressions for the Poynting vectors Pscat and

Pinter. Although we are using the same formulas as before, the Poynting vectors are now time-dependent

and we can therefore observe the energy distribution in our system as a function of time. Integrating

over Pscat(t) and Pinter(t) will then give us the total energy density rate scattered and absorbed by the

atoms. Similar as in the previous chapters, these two contributions have to cancel each other out when

we integrate over the whole interaction and decay time for energy conservation to hold, i.e. the energy

emitted by the atoms has to equal the energy that has been taken out of the laser pulse.

5.2.1 Without Phase Kick

We solve this again numerically in Mathematica and use as standard parameters γ = γ0 = 1
100 [a.u.],

Ω = 1[γ0], ω = 100[γ0], ∆ = 0 and σ = 50 (→ twidth ' 1 [γ−1]). For these values, one gets quite beautiful

results:

Figure 24: Columns: (left) Pscat(t), (middle) Pint(t) and (right) Pscat(t) + Pint(t). Rows: (top) decay rate

γ = 1
10
γ0, (middle) γ = 3

10
γ0 and (bottom) γ = γ0. The signal of the scattered light falls of exponentially due to

spontaneous emission and as expected, for lower decay rates the signal becomes less damped. Furthermore, during

the time of interaction between atoms and laser pulse, energy is being transmitted from the laser into the atoms.

This energy then gets emitted again in form of radiation (spontaneous emission) after the pulse has passed the

atoms. Note that the spontaneous decay sets in directly after the interference part becomes 0.
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As we see, during the time when pulse and atoms overlap or interact, energy is being transferred from

the laser pulse into the atoms. This energy is afterwards reemitted in form of radiation via spontaneous

emission. This is a quite plausible result, since it corresponds very well to the solutions of the density

matrix elements we saw in the previous chapter. As a reminder: The laser pulse “kicked” the atoms into

the excited state. This complies to the transfer of energy between atoms and pulse while they overlap.

Afterwards, the excited state slowly decays due to spontaneous emission, which is only possible through

the emission of radiation.

We will now check for energy conservation by integrating the total energy current density from t = 0

to ∞. This will be done for several values of γ, Ω and ∆:

Table 1: Energy of the system for several

values of γ.

γ[γ0] Wscat Wint Wscat +Wint [a.u.]

3
10 0.267 −0.267 −8 · 10−10

7
10 0.604 −0.604 −5 · 10−10

1 0.838 −0.838 −5 · 10−10

2 1.493 −1.493 3 · 10−10

7 2.910 −2.910 −4 · 10−10

Table 2: Energy of the system for several

values of Ω.

Ω[γ0] Wscat Wint Wscat +Wint [a.u.]

1
100 1.21 · 10−4 −1.21 · 10−4 −3 · 10−13

1
10 0.012 −0.012 −4 · 10−12

5
10 0.276 −0.276 −1 · 10−10

1 0.838 −0.838 −5 · 10−10

3 1.027 −1.027 3 · 10−9

Table 3: Energy of the system for several

values of ∆.

∆[γ0] Wscat Wint Wscat +Wint [a.u.]

−5 0.045 −0.045 −2 · 10−11

−2 0.409 −0.409 1 · 10−10

0 0.838 −0.838 −5 · 10−10

2 0.409 −0.409 1 · 10−10

5 0.045 −0.045 −2 · 10−11

As we can see, to a very high precision the scattered and interference parts cancel each other. The

relative error is always around the order of 10−9 [a.u.], which is, at least from an experimental point of

view, very low. However, we can most probably assume that these deviations come from numerical errors

and the real result is much lower or even 0. As a motivation, we can first take a look at how well the

solutions we obtained for the density matrix elements fulfill their equations of motion [2121]. Concerning

this, it has to be remarked that Mathematica’s NDSolve returns a piecewise polynomial function of high

enough order to approximate the real solution of the partial differential equation. Therefore, we can take

these polynomials and insert them into the equations of motion to get an idea of how close they are to
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the real solutions (see fig. 2525).

The differences that occur are approximately of the same order as the deviations we got while calcu-

lating the total energy. Moreover, if we integrate over the plots in fig. 2525, we also obtain a result of the

order 10−9 [a.u.].

Figure 25: Deviations for (left) ρ̂ee and (right) Im(ρ̂eg). These calculations have been performed with the standard

parameters for γ, Ω, etc. given in this chapter. Also, the units of the axis are the same as in fig. 2424.

To further analyse this, we will now introduce an artificial loss channel by allowing spontaneous decay

into some other level than our initial ground state (denoted as γloss):

∂tρ̂ee = −(γ + γloss)ρ̂ee + iΩ(t)(ρ̂eg − ρ̂ge) (121)

To get the same deviations as before in our energy calculation, γloss would have to be approximately of

the order γloss ' 10−10[γ0]. As already stated, from an experimental standpoint this is small enough to

be neglected and we can safely assume that energy conservation holds.

However, it is more likely that the source of this deviation comes from numerical uncertainties rather

than a real physical loss channel we haven’t taken into account yet. For instance, increasing the NDSolve-

parameter “WorkingPrecision” or decreasing “MaxStepSize” improves our result, but not in a very

efficient manner. Ultimately, one has to keep in mind that the achievable precision of the solution is

limited by a) stability and convergence-behaviour of the numerical method b) memory capacity and c)

calculation time. Therefore, an exact solution won’t be possible and energy conservation can only be

proven to a certain numerical precision.

For the results shown here and for most of the following calculations, the option “WorkingPrecision” of

the Mathematica function “NDSolved” was set to “32” to avoid cutoff-errors. Furthermore, “MaxSteps”

was set to infinity. For “NIntegrate”, a “WorkingPrecision” of “16” was used together with a value of

“20” for the option “MaxRecursion”.

5.2.2 With Phase Kick

We will now again introduce a phase kick to the dipole answer, i.e. E
(+)
scat gains an additional factor eiφk .

Thus, we obtain for the energy distribution of the system:
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Figure 26: Columns: Phase kick φk of (left) π
2

, (middle) π and (right) 3π
2

. Rows: (top) interference energy

(bottom) total energy. Again, the standard parameters have been used to calculate these results. The interference

part changes drastically with φk, but the scattered part remains unchanged as can also be seen from the formulas

for the Poynting vector.

As we see, the energy distribution over time changes drastically. Furthermore, measured over the whole

interaction and decay time, energy is not conserved anymore. We obtained this result already in all pre-

ceeding chapters. Therefore, either the kick performs work, or in a real physical system the realization

of the kick does not break energy conservation and our artificial implementation of the kick up until

now is slightly wrong. For instance, in all previous chapters the kick was already present during the

excitation of the atom. However, in the experiment [44], excitation and phase kick are separated. This

will be investigated further in the next chapter.

Table 4: Checking energy conservation for several values of φk. Note that these results have been obtained by

choosing the standard parameters defined in the previous chapter for γ, Ω, etc.

φk
π
2 π 3π

2

Wscat [a.u.] 0.838 0.838 0.838

Wint [a.u.] 0 0.838 0

Wscat + Pint [a.u.] 0.838 1.676 0.838
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6 Lorentz Meets Fano Spectral Line Shapes

We will now describe the experiment [44] with our formalism by using a second laser for

inducing the phase kick φk. This way, we can test for energy conservation in a real physically

relevant system. Afterwards, the results will be compared with the simple two-level ansatz,

which can be modified to give the same results. Moreover, as we work with pulses now, we

can’t just take the detected intensity and calculate it’s frequency spectrum by analysing the

dependence on the detuning ∆. Rather, the spectrum has to be calculated separately by Fourier

transforming the electromagnetic fields. This will allow us to analyse the manipulation of the

absorption profile more thoroughly.

6.1 Application: Three-Level System

In the previous chapters, we introduced the phase kick φk always by hand and not with a physical effect.

We will change this now by coupling a third level to our initial two-level system, whereby a transition

from |1〉 to |2〉 and vice versa is forbidden due to parity (see fig. 2727). Accordingly, it is now possible to

drive two transitions, i.e. |1〉 ↔ |e〉 and |e〉 ↔ |2〉.

Figure 27: Three-level system in ladder form. Only the transitions |1〉 ↔ |e〉 and |e〉 ↔ |2〉 are possible, as the

transition |1〉 ↔ |2〉 is forbidden due to parity. Ωp and Ωc are the corresponding Rabi-Frequencies for driving the

transitions. γp and γc are the decay rates due to spontaneous emission. Note that, other than depicted here, the

states aren’t separated equidistantly but such that a laser which drives one of the two transitions leaves the other

one completely untouched. In the experiment, this is realized by using a XUV laser for the probe field and a NIR

laser for the control field.

The field we analysed until now, the so called probe pulse, will drive the lower transition. To induce

a phase kick onto the atomic response, a control pulse will be used which drives the upper transition

|e〉 ↔ |2〉. This control pulse has to be stronger than the probe pulse, such that it dresses the two states

and consequently leads to a detuning for the |1〉 ↔ |e〉 transition. In principle, this is analogue to a

driven classical harmonic oscillator, where driving the system with a detuning ∆ 6= 0 leads to a phase

shift of the driven oscillator. Furthermore, if the control laser is heavily detuned, i.e. ∆c � Ωc, the

control laser just induces a phase kick and doesn’t change the population of the state |e〉 [1010].
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6.1.1 Density Matrix Elements

To describe the dynamics of our three-level system, we need its Hamiltonian which can just be constructed

by adding the Hamiltonians of the two possible transitions [1010]:

V = h̄∆pŜ11 − h̄∆cŜ22 + h̄Ωp

(
Ŝ1e + Ŝe1

)
+ h̄Ωc

(
Ŝe2 + Ŝ2e

)
(122)

Here, we again chose Ŝxy = |x〉 〈y|. This leads to the following equations of motion for the density matrix

elements:



∂tρ̂ee

∂tρ̂11

∂tρ̂22

∂tρ̂12

∂tρ̂21

∂tρ̂1e

∂tρ̂e1

∂tρ̂2e

∂tρ̂e2



=



−γp 0 γc 0 0 −iΩp iΩp −iΩc iΩc

γp 0 0 0 0 iΩp −iΩp 0 0

0 0 −γc 0 0 0 0 iΩc −iΩc
0 0 0 A 0 iΩc 0 0 −iΩp
0 0 0 0 A∗ 0 −iΩc iΩp 0

−iΩp iΩp 0 iΩc 0 B 0 0 0

iΩp −iΩp 0 0 −iΩc 0 B∗ 0 0

−iΩc 0 iΩc 0 iΩp 0 0 C 0

iΩc 0 −iΩc −iΩp 0 0 0 0 C∗





ρ̂ee

ρ̂11

ρ̂22

ρ̂12

ρ̂21

ρ̂1e

ρ̂e1

ρ̂2e

ρ̂e2



(123)

with A = −γc2 − i(∆c + ∆p), B = −γp2 − i∆p and C = − 1
2 (γc + γp) + i∆c. This system of partial

differential equations can easily be solved numerically with Mathematica 9.0 by using the implemented

NDSolve-function (see Appendix D.2D.2). Note that the Rabi-Frequencies are proportional to the field

amplitude, i.e. they include the pulse-shape:

Ωp = Ωp,0 e
− (kinrp−ωint)

2

2σ2 (124a)

Ωc = Ωc,0 e
− (kinrc−ωint)

2

2σ2 (124b)

For simplicity, we assume w.l.o.g. that probe - and laser pulse have the same frequency and width.

Furthermore, Ωx,0 is the Rabi-Frequency without any time-varying amplitude of the electric field, i.e.

Ωx,0 = −Ex,0ε̂dh̄ . With tx = krx
ωin

, we can adjust at which time the individual pulses hit the atoms, as we

have already done in the previous chapter. From now on, we will choose these parameters such that the

control pulse hits the atoms separately and after the probe pulse.

6.1.2 Inducing a Phase Kick via a Control Laser

We are now able to solve the partial differential equations for different values of the probe - and control

laser parameters. Our first goal is to check if it is really possible to modify ρ̂e1 with a phase factor by

adjusting the control laser accordingly. Remember that giving ρ̂e1 a phase kick is similar to giving the
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atomic dipole response an additional phase shift. To accomplish this, we start by investigating a special

scenario: We assume the atoms to be in the state 1√
2

(|1〉+ |e〉) (e.g. after a 1
4 Rabi - Oscillation).

Furthermore, we neglect spontaneous decay for now and set the probe laser off, such that the atoms will

remain in their current state. In theory, it should now be possible to introduce a phase kick with the

control laser without changing the populations (see fig. 2828).

Figure 28: It is possible to give ρ̂e1 a phase kick with the control laser (here: φk = π
2

). For the calculation,

following parameters were used: ωin = 1 [a.u.], ∆c = 1 [ωin] , Ωc = 1 [ωin], tc = 720 [ 1
ωin

], σ = 50, Ωp = γp =

γc = 0. As the detuning ∆c is quite small, there are still coherent evolutions induced by the control laser between

|e〉 and |2〉.

The control laser hits the atoms at around t = 720 [ 1
ωin

], what leads to oscillations in Re(ρ̂e1), Im(ρ̂e1)

and the phase of ρ̂e1. This is exactly what one would expect, since the detuned control laser should

indeed change the phase of ρ̂e1 dependent on time, leading to oscillations of the phase which stop when

the pulse has passed [1010]. Thus, we were able to induce a total phase kick of φk = π
2 to ρ̂e1. Increasing

the detuning will enable us to a) damp the coherent evolution out of |e〉 to |2〉 tremendously and b) alter

the phase kick. Furthermore, this will reduce the oscillations, making it possible to perform a delta-like

phase kick if the width of the control pulse is small enough. In the context of our later analysis, small

enough means that the decay rate γp has to be much smaller compared to the kick-duration, making the
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kick appear delta-like.

It is now possible to first excite the atoms with the probe pulse and then giving them a phase kick

via the control pulse. In this case, the atoms are initially in the state |1〉. The dependence of the phase

kick φk on the detuning ∆c of the control laser is illustrated in fig. 2929.

Figure 29: Phase kick φk induced by the control laser in dependence of its detuning ∆c in units of π. The

following parameters were used for the calculation: γp = 1
200

[a.u.], γc = 1 [γp], Ωp = 10 [γp], Ωc = 400 [γp],

ωin = 200 [γp], ∆p = 0, σ = 10 (→ twidth ' 1
10

[γ−1]).

Note that the phase kick only depends on ∆c, Ωc and σ. The pulse position as well as the values for the

probe pulse don’t alter φk, as has to be expected.

6.1.3 Energy Conservation

We will now perform the same analysis as in chapter 5.25.2 concerning the total energy of the probe pulse

- atoms system. However, the phase kick will now be implemented via the control laser instead, as

previously, just by hand. Making sure that the pulses do not overlap, we obtain:

Figure 30: (left) Total energy distribution over time of the probe pulse - atoms system and (right) the phase of

ρ̂e1. The energy distribution remains unchanged from the kickless case. Moreover, the control laser induces, as

intended, a phase kick of φk = π
2

onto the dipole response of the atoms. For the calculation, the same parameters

as in fig. 2929 were used, but with different pulse positions (tp = 100 [ 1
ωin

], tc = 160 [ 1
ωin

]) and ∆c = 8 [Ωc].
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Integrating over the total energy distribution in time, we again obtain a result of the order of 10−9 [a.u.],

i.e. energy is still conserved in the limits of our numerical precision. Furthermore, the plot of the time

dependent energy looks identical to the case without phase kick in chapter 5.25.2. Looking at the laser

pulse setup in fig. 3131, this can be explained quite vividly: First, the probe pulse hits the atoms and

energy is transferred from the pulse into the atoms (absorption). When the pulse has passed the atoms,

both are locally separated and energy cannot be exchanged between those two anymore. Therefore, as

soon as the control pulse hits the atoms, the kick can’t possibly change the energy distribution of the

probe pulse - atoms system.

Figure 31: Setup of our experiment. First, the probe pulse hits the atoms (yellow), which leads to an transfer of

energy out of the pulse into the atoms (red), resulting in an excitation of the atoms (blue). Later on, the control

pulse (green) hits the atoms and induces a phase kick. Note that the red curve is proportional to Im(ρ̂e1) and the

blue one to ρ̂ee.

To sum it up, the pulse shape of the probe pulse limits the time during which the probe laser and the

atoms can exchange energy. Therefore, if the control laser hits the atoms sufficiently later as the probe

pulse, it leaves the total energy distribution of our probe laser untouched. Therefore, the phase kick

can’t be seen in the time dependent energy distribution, but only in the frequency spectrum.

In all previous chapters, the phase kick was already present during the excitation of the atoms. This

lead to a breaking of energy conservation, as one can simply imagine that forcing a phase kick onto a

driven harmonic oscillator costs definitely energy. We will later see that our simple two-level approach

from chapter 55 leads to the same results presented here.

6.1.4 Frequency Spectrum

Since for separate pulses, energy conservation holds, we have to check now if the phase kick leads to the

desired effect of altering the absorption line. If this is indeed the case, there has to be an additional

modification in the frequency spectrum which ensures energy conservation.

To get the frequency spectrum of the detected intensity, we have to calculate the expression:

P (ω) = 2ε0c Re 〈E(−)
in (ω)E

(+)
scat(ω)〉 (125)
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The frequency dependent fields can be obtained via a Fourier transform

E
(+)
scat(ω) =

∫ ∞
tp

E
(+)
scat(t) e

2πiωt dt (126a)

E
(−)
scat(ω) = E

(+)†
scat (ω) =

∫ ∞
tp

E
(−)
scat(t) e

−2πiωt dt (126b)

where tp is the time when the pulse hits the atoms. This gives us [88]:

P (ω) = 2ε0c Re

∫ ∞
−∞

dt1

∫ ∞
tp

dt2 〈E(−)
in (t1)E

(+)
scat(t2)〉 e−2πiω(t1−t2) (127a)

→ 2ε0c

(∫ ∞
−∞

dt1 〈E(−)
in (t1)〉 e−2πiωt1

)(
Re

∫ ∞
0

dt2 〈E(+)
scat(t2)〉 e2πiωt2

)
(127b)

The simplifications used here can be motivated as follows: First, the incident field is classical and can

therefore be separated from the expectation value. Furthermore, we can choose tp = 0, such that the

Gaussian envelope of the pulse can be integrated trivially, as the maximum of the pulse coincides in this

case with t = 0. As the Fourier transform of a Gaussian is again just a Gaussian (and therefore a real

function), it can be drawn out of the Re(...). Additionally, in all coming calculations we will neglect the

oscillating terms e±iωint, as these only shift the detected spectrum from ω = 0 to ω = ω0.

In addition, it’s possible to show that
∫∞
−∞ P (ω) dω =

∫∞
−∞ P (t) dt by using

∫∞
−∞ e−2πiω(t1−t2) dω =

δ(t1 − t2), i.e. the total energy is the same in the time - and frequency domain. Thus, since energy is

conserved in the time domain, it should also be conserved in the corresponding frequency spectrum.

Figure 32: (left) Absorption line without control laser. The Lorentzian has small “ears”, which originate from

the finite width of the probe pulse. (right) Absorption line with control laser on. The induced phase kick is ' π
2

.

Small oscillations occur in the spectrum due to the control pulse. The following parameters were used for the

calculation: γp = 1
200

[a.u.], γc = 1 [γp], Ωp = 2 [γp], Ωc = 200 [γp], ωin = 200 [γp], tc = 20 [ 1
ωin

], ∆c = 11.1 [Ωc],

∆p = 0, σ = 10.

As expected, the kick alters the detected line shape. However, additional oscillations occur in the

spectrum. We will analyse this effect first by going back to the simpler two-level system and constructing

a toy model. Afterwards, the obtained results will be compared to the results of the three-level system.
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6.2 Returning to the Two-Level System

To analyse the important physics, we will first return to the simpler two-level case. As the phase kick

should be separated from the excitation, we implement it the following way:

E
(+)
scat(t) = i

k3
0d

3πε0
Ŝ−(t)ei(k0r−ω0tr+θ(t−tc)φk)ε (128)

Here, we modified the phase kick with a Heaviside Theta Function, which switches the phase kick on at

time tc. Furthermore, we define θ(0) = 1. This way, it is possible to give the atomic dipole response a

delta-like phase kick at an arbitrary, adjustable time tc.

Figure 33: (left) Setup for probe pulse and phase kick. Red is the probe pulse that excites the atoms, yellow is

the value of the phase kick and blue is ρ̂ee. The phase kick comes only after the excitation of the atoms. (right)

Total energy distribution dependent on time. The system behaves similar as without the phase kick.

In this setup, when phase kick and probe pulse are separate, we have indeed again energy conservation.

This is the same result we obtained in the previous chapter. Therefore, we will start now by analysing

the frequency spectrum of the two-level scenario.

6.2.1 Approximation with Analytic Functions

As already said, it’s easier to first introduce a toy model for investigating the energy conservation in the

frequency spectrum, as we are then able to perform all calculations analytically. To derive an appro-

priate model, we first look at 〈E(+)
scat〉 ' iρ̂eg = −Im(ρ̂eg) (as Re(ρ̂eg) = 0 for ∆ = 0) without a phase kick:
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Figure 34: (left) iρ̂eg as a function of time. (middle) Fit to the free decay of iρ̂eg after the excitation with the fit

function c · e−a(t−b). Performing a Least-Square fit in Mathematica 9.0 gives for the parameters a ' 0.0025, b '

−0.5859 and c ' −0.0592. (right) Approximating iρ̂eg with the analytic function −0.0591 θ(t−30) e−0.0025(t−30),

where t is in units of 1
ωin

. For the solution of the two-level density matrix elements, the following parameters

were used: γ = 1
200

[a.u.], Ω = 1 [γ], ω = 200 [γ], σ = 10 and ∆ = 0.

As we can see, the evolution after the excitation is indeed an exponential decay with decay rate γ
2 ,

as already expected from the analytic solution of the free equation of motions for the density matrix

elements. Furthermore, we simplify the probe pulse in our toy model by assuming a delta-like excitation,

again represented by a Heaviside Theta Function θ(t − tp). Note that in this case, 〈E(−)
in (ω)〉 is just a

constant prefactor, as the Fourier transform of the delta-distribution is a constant. Therefore, the energy

can be spread to all frequencies in the delta-kick case. For a real probe pulse with a certain width, this

spread gets limited as the Fourier transform of a Gaussian with finite width is again a Gaussian with

finite width.

We will now compare the frequency spectrum of our new toy model with the more realistic two-

level model. For this, we will only plot 〈E(+)
scat(ω)〉 and neglect the additional envelope obtained from

〈E(−)
in (ω)〉, such that the two-level model and the toy model can be compared on equal terms. However,

there is one major problem: Since the probe pulse is not delta-like, the excitation of the atoms needs a

finite time, but in our toy model, the atoms become excited instantly. Thus, the frequency spectrum of

the toy model will differ from the two-level case due to the position of the delta-kick. To illustrate this

effect, the delta-kick will be performed at different times tp = { 0, 9
200 ,

30
200 } [γ−1]

Figure 35: Frequency spectrum of the probe pulse for φk = π
2

. (left) tp = 0, (middle) tp = 9
200

[γ−1] and (right)

tp = 30
200

[γ−1]. The red, dotted curves show the result of the toy model. The blue curves represent the original

data of the two-level model. The phase kick is applied at tc = 0.

Indeed, additional oscillations occur dependent on the kick-time. Furthermore, in the two-level case the
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pulse width changes the detected spectrum slightly. These two observations originate, in principle, from

the same effect that the atoms aren’t instantly excited at t = 0.

More importantly, the results obtained by the toy model are very close to the two-level case. The

only differences that occur come from the fact that in a real experiment, it’s not possible to create a

perfect delta-pulse to excite the atoms. However, the effects due to the finite pulse width can be reduced

by increasing the lifetime γ−1 of the atomic transition.

Additionally, for φk = π
2 , the expected Fano profile was recovered. In fig. 3636, we see that the well

known line forms for φk = 0, φk = π and φk = 3π
2 can be constructed as well.

Figure 36: Manipulating the line form via φk. (left) φk = 0, (middle) φk = π and (right) φk = 3π
2

. The phase

kick is still being applied at tc = 0.

In the previous chapter, we found out that separating excitation pulse and phase kick leads to energy

conservation. We will introduce this now into our toy model by applying the phase kick via the function

eiθ(t−tc)φk with tc > 0:

Figure 37: Spectrum with φk = π
2

for different phase kick positions tc. (top) Re(iρ̂eg e
iθ(t−tc)π2 ) and (bottom) the

corresponding frequency spectrum. (left) tc = 0.2 [γ−1], (middle) tc = 0.4 [γ−1] and (right) tc = 4 [γ−1].

Note that due to the delayed phase kick, additional oscillations appear in the spectrum. In the next

64



6 LORENTZ MEETS FANO SPECTRAL LINE SHAPES 6.2 Returning to the Two-Level System

chapter, we shall see that these oscillations lead to a deformation of the spectrum without changing its

energy content, therefore enabling us to switch between Lorentz and Fano profiles while total energy

is conserved. Also, for large delays, the spectrum transforms to a negative Lorentzian again, as one

would expect. The Fourier transform has been done numerically by modifying the already included

Mathematica function “Fourier” (see Appendix D.1D.1).

6.2.2 Analysis of the Frequency Spectrum

Putting everything together from the last chapter, our toy model now has the following form:

iρ̂eg(t)
toy model

−−−−−−−−→ Ptoy(t) = −θ(t) eiθ(t−tc)φk e−γt (129)

The frequency spectrum of the detected signal can be obtained by calculating Re
(
F
(
Ptoy(t)

))
, where

F denotes the Fourier transform as introduced in chapter 6.1.46.1.4. The Fourier transform can be done by

simply using the “FourierTransform” - function of Mathematica 9.0.

First, we will take a look at the simple case of no phase kick, i.e. we set φk = 0. This gives us,

independent of tc:

Ptoy(ω)

∣∣∣∣
φk=0

= − γ

γ2 + ω2
(130)

This is, as expected, a negative Lorentzian. Further, let’s assume that tc = 0 and φk arbitrary, i.e.

excitation and phase kick are coincident. Thus, we get:

Ptoy(ω)

∣∣∣∣
tc=0

=
−γ cos (φk) + ω sin (φk)

γ2 + ω2
(131)

Note that if we include the oscillations of the electromagnetic fields e−iωint in Ptoy(t), this only shifts

ω → ω − ωin = ∆. Thus, we obtain the exactly same results as in chapter 4.34.3, where the incident field

was a continuous plane wave. This makes sense, as in both cases, the kick is being performed while the

atoms interact with the probe laser.

Finally, we can assume tc > 0 to get:

Ptoy(ω)

∣∣∣∣
tc>0

= Ltoy(ω) +Otoy(ω) (132a)

with Ltoy(ω) = − γ

γ2 + ω2
(132b)

Otoy(ω) =
2 e−γtc sin (φk2 )

(
ω cos (φk2 + tcω) + γ sin (φk2 + tcω)

)
γ2 + ω2

(132c)

Thus, the spectrum can be split up into a negative Lorentzian Ltoy(ω) and an oscillating term Otoy(ω).

Calculating the total energy content of Ptoy(ω)
∣∣
tc>0

, one can easily determine that:
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∫ ∞
−∞

Otoy(ω) dω = 0 (133)

This means that the total energy is still the same as for the case without phase kick. Therefore, intro-

ducing a phase kick redistributes the energy in the spectrum without changing the energy content of the

spectral line. This is realized with an oscillating term Otoy(ω), which vanishes when integrated over.

Note that this redistribution also covers frequencies which lie outside the range of the normal negative

Lorentzian. In the case of a delta-like probe pulse, these oscillations spead over all frequencies from −∞
to ∞. However, in the case of a finite probe pulse, the spread will be limited to a certain range around

the original Lorentzian’s position.

To sum it up, the oscillations which appeared when setting tc > 0 in the last chapter are actually

necessary to ensure energy conservation. Consequently, the phase kick doesn’t just alter the line shape

from Lorentz to Fano and vice versa, it also introduces small oscillations. How the oscillating term

Otoy(ω) changes dependent on tc is being illustrated in fig 3838.

Figure 38: Otoy(ω) for different values of φk and tc. (top) φk = π and (bottom) φk = π
2

. (left) tc = 1
5

[γ−1],

(middle) tc = 1 [γ−1], (right) tc = 3 [γ−1]. If the kick is applied at times ≤ γ−1, the line shape gets indeed

altered. However, for greater values of tc, strong oscillations occur which destroy this modification. Furthermore,

the overall contribution of the oscillating term becomes smaller and for tc → ∞, it vanishes. For these plots,

γ = 1
10

[a.u.] was used.

6.3 Verifying the Results of the Toy Model

6.3.1 Two-Level System

We will now check if our results are also true for the two-level model. To do so, we have to calculate the

total energy of the frequency spectrum, i.e.
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∫ ∞
−∞
〈E(−)

in (ω)E
(+)
scat(ω)〉 dω (134)

This will be done for different phase kick values φk = 0, π
2 , π,

3π
2 . The corresponding frequency spectra

are illustrated in fig. 3939.

Figure 39: Frequency spectrum for (top left) φk = 0, (top right) φk = π
2

, (bottom left) φk = π and (bottom right)

φk = 3π
2

. The parameters used here are: γ = 1
200

[a.u.], Ω = 1 [γ], ωin = 200 [γ], σ = 10 and ∆ = 0.

If we perform the integral to obtain the total energy, the differences of the results for the different values

of φk are of the order of 10−6 [a.u.]. Since taking the Fourier transform of the density matrix elements

certainly adds new uncertainties in the result, we can safely state that the energy content of the spectral

line doesn’t change with φk.

How the finite width of the probe pulse changes the spectral line can be seen very nicely in fig. 4040

and 4141. First, introducing a finite pulse width leads to “ears” around the spectral line, as can be seen in

the case without phase kick. Furthermore, the oscillations that originate from the phase kick are being

damped (fig. 4141).
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Figure 40: Negative Lorentzian for different pulse widths of the probe pulse. (left) Pulse width twidth ' 1
10

[γ−1]

and (right) twidth ' 1.3 [γ−1].

Figure 41: (top) The blue line represents the probe pulse, the red one Re(iρ̂eg). (bottom) The corresponding

frequency spectrum of the interference energy. (left) The pulse width is twidth ' 1
100

[γ−1], (middle) twidth '
1
4

[γ−1] and (right) twidth ' 1
2

[γ−1].

6.3.2 Three-Level System

Finally, we will take a look at the realistic three-level system again. In the previous chapters, the control

laser introduced small oscillations which became stronger with increasing delay of the control pulse. This

is also the case here:

68



6 LORENTZ MEETS FANO SPECTRAL LINE SHAPES 6.3 Verifying the Results of the Toy Model

Figure 42: Additional oscillations occur if the delay of the control pulse is increased. (top) The red line represents

again −Im(ρ̂e1) and the blue one is the control pulse. Note that the pulse has in all cases the same width. (bottom)

The corresponding frequency spectrum resulting from the above setup. The same parameters as in fig. 3636 were

used.

However, since the control pulse is not delta-like as in the previous examples, but has a finite width, an

additional effect occurs which “distorts” the spectrum:

Figure 43: (top) Again, the setup with varying pulse widths. Additionally, the detuning has been adjusted for

every pulse to ensure that the phase kick is in all three cases φk = π. (left) twidth ' 2
100

[γ−1], ∆c = 2 [Ωc],

(middle) twidth ' 1
10

[γ−1], ∆c = 5 [Ωc] and (right) twidth ' 3
10

[γ−1], ∆c = 8.5 [Ωc].

Since the total energy is conserved for the three-level system (see chapter 6.1.36.1.3), the results of the toy

model can be applied here as well. As the toy model and the three-level case differ in the pulse widths
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only, analysing the effect of changing these widths more thoroughly is certainly of high interest for further

studies.

6.4 Overlapping Pulses in the Realistic System

One question that still remains is: What happens when probe - and laser pulse overlap? In the preceeding

chapters, this lead to a breaking of energy conservation. However, analysing this in the more realistic

three-level system, we obtain an intriguing result: The total energy is still conserved up to a relative,

numeric error of 10−9 [a.u.].

To illustrate this, the time dependent energy has been calculated for γp = 1
200 [a.u], γc = 1 [γp],

ωin = 200 [γp], Ωc = 2 [γp], ∆c = 8 [Ωc], ∆p = 0 and σ = 10. In fig. 4444, both pulses overlap completely.

Figure 44: (top left) Scattered energy, (top right) interference energy and (bottom) total energy dependent on

time. The influence of the control pulse can be easily seen in these plots. For instance, the phase kick changes the

amount of energy the atoms scatter. Furthermore, the interference energy now also has a positive part instead of

just being negative. This is the same effect that happens when detuning the probe laser.

Thus, on the one hand, due to the overlap of the pulses the amount of scattered energy gets reduced.

On the other hand, the interference energy takes on the same form as if no control pulse was present,

but the probe pulse detuned. This makes sense, since the control pulse changes how the atoms interact

with the probe pulse. Furthermore, the control pulse leads indeed to a detuning for the probe pulse,

matching these results.

The frequency spectrum for completely overlapping pulses looks the following way:
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Figure 45: Detected frequency spectrum for completely overlapping pulses.

From fig. 4646 (right), we see that for a complete overlap, the induced phase kick amounts to ' 3π
2 ,

matching the Fano profile illustrated here.

In fig. 4646 (left), it’s shown how the scattered and interference energy change with the distance be-

tween both pulses.

Figure 46: (left) Blue represents the scattered energy and red the interference energy/energy absorbed by the

atoms. (right) Phase kick φk induced on ρ̂e1. In this example, probe - and control pulse have the same width.

As we see, both scattered and interference energy change in such a way that their sum remains constant,

i.e. = 0. Therefore, energy is still conserved even when the pulses overlap. During the first few chapters

of this thesis, an overlap between excitation and phase kick resulted in a breaking of energy conservation.

However, this was only the case because the phase kick was introduced manually by multiplying ρ̂e1 with

eiφk , leaving ρ̂ee unaltered. Furthermore, when the pulses are separated, altering the position of the

control pulse does not change the value of φk. But fig. 4646 shows that, in the case of overlapping pulses,

the position of the control laser plays indeed a role for the value of φk. These are very interesting results

that should be studied further in the future.
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7 Summary and Outlook for Further Studies

The main goal of this thesis is to better understand how energy is conserved in systems with time -

dependent Fano control. The investigation is based on an experiment performed at the Max-Planck-

Institut für Kernphysik in Heidelberg [44], where absorption lines of Helium are being transformed from

Lorentz to Fano profiles and vice versa via a second laser. However, the framework and results derived

here can also be applied to other physical systems, e.g. [55].

The natural starting point was to investigate energy conservation in simple optical systems, e.g. a

single two-level atom which is being excited by a plane laser wave (chapter 33). To check for energy

conservation, we used, analogue to Classical Electrodynamics, a semiclassical version of the Poynting

vector for detectors far away from the atom (eq. 8484):

P =2ε0c Re 〈E(−)
in E

(+)
in 〉 k̂ + 2ε0c Re 〈E(−)

scatE
(+)
scat〉 r̂

+2ε0c Re 〈E(−)
in E

(+)
scat〉 r̂ + 2ε0c Re 〈E(−)

scatE
(+)
in 〉 k̂

Note that the electric field, after interacting with the atom, is composed of two contributions E =

Ein + Escat. Ein represents the case as if no atom was present, i.e. the light just passes the atom

undisturbed, and Escat represents the case when atom and laser interact, i.e. it’s the atom’s response

to the incident light. Since we have two possible ways of interaction, interference can occur. This is the

very same principle we found when describing the origin of Fano lines. Therefore, it’s not surprising that

we can observe Fano lines with this framework.

To generalize this ansatz, a transition from one atom to many atoms was performed (chapter 44). In

principle, an approach similar to the Fraunhofer approximation was used to simplify the expression for

the resulting total scattered field of all atoms. Accordingly, it was shown that the sum over all scattered

fields can be replaced by an effective, planar field, which originates from the center of mass of the atoms

and travels in the same direction as the incident light.

With this approximation, it was then possible to extend the energy analysis to laser pulses (chapter

55 and 66). First, energy conservation has been tested in a simple two-level system that is being excited

by a Gaussian laser pulse. Furthermore, the atomic response ρ̂eg was modified by hand with a phase

kick eiθ(t−tc)φk , since this should lead to a modification of the detected line shape [44]. And indeed, the

line shape does transform as expected. However, we were able to observe additional oscillations which

ensured that the energy content of the spectral line doesn’t change during its transformation. This has

also been verified analytically by using a toy-model, which approximated the behaviour of ρ̂eg for delta-

like excitation of the atom. With the help of this toy-model, it was possible to show that the spectrum

can be decomposed into two parts: A negative Lorentz term and an oscillating term, which changes the

resulting line shape depending on a) the phase kick φk and b) the time-span tc between excitation and

phase kick. It’s very intriguing that the second term, which also gives rise to the additional oscillations,

has no energy content, i.e. even though the line shape changes, the total energy of the spectral line

remains constant. Furthermore, increasing tc leads to stronger oscillations, which get damped to 0 for
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tc →∞, such that the original negative Lorentz is being recovered.

To sum it up, the phase kick leads to a redistribution of energy in the frequency spectrum, taking

energy into or out of regions beside the original, negative Lorentz profile.

Inspired by the experiment [44], the phase kick was then implemented into our physical model via a

second laser by extending the analysis to a three-level system. The results obtained for this realistic

model are approximately the same as for the two-level system. The additional oscillations occur as well,

but due to the finite width of the control pulse (which performs the phase kick), they appear to be

asymmetric. This is an effect which should certainly be studied further. However, as the total energy

is conserved in time-domain (and therefore also in the frequency spectrum), the original results should

also apply here.

During the course of the thesis, the phase kick has also been induced by hand for e.g. the two-level

atom which is being excited by a plane wave. This lead in all cases to a breaking of energy conservation,

and one could assume that the phase kick performs work. However, in the realistic three-level model,

an overlap between probe pulse and control pulse does not break energy conservation, as for overlapping

pulses, the interaction between atom and probe pulse is altered. Therefore, the amount of light scattered

by the atom due to an interaction with the probe pulse is modified as well. This is a very interesting

result, since, unlike in the non-overlapping case, the scattering behaviour of the atom seems to be affected

by the control pulse. Sadly, in the time frame set for this thesis, there was not enough time to investigate

this effect more in-depth.

Thus, it was demonstrated that energy is conserved in systems with Fano control. Some of the

investigations started in this thesis can certainly be taken one step further to improve the already

obtained results and deepen the understanding of how energy conservation is realized. For instance, a

more thorough study about the influence of the pulse widths on the detected spectrum would be one

starting point. Examining the energy conservation of the three-level system driven by plane wave probe

- and control lasers could also result in worthwhile results. Additionally, it would be of high interest if

some of the stated effects, e.g. the change of the oscillations in the spectrum dependent on tc or the

pulse widths, can be observed in experimental setups.
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Appendix A On the Derivation of the Scattered Field

A.1 Polarization Sums

Let’s assume we have an electromagnetic wave that propagates in the k̂-direction. The possible polar-

izations ε̂k,1 and ε̂k,2 must obey the following orthogonal identities:

ε̂k,1 × ε̂k,2 = k̂ (135a)

ε̂k,1 × k̂ = −ε̂k,2 (135b)

ε̂k,2 × k̂ = ε̂k,1 (135c)

k̂ · (ε̂k,1 × ε̂k,2) = 1 (135d)

The sum over the polarizations can thus be evaluated as follows:

2∑
i=1

(d · ε̂k,i)ε̂k,i = (d · ε̂k,1)ε̂k,1 + (d · ε̂k,2)ε̂k,2 (136a)

= −
(
d · (k̂ × ε̂k,2)

)
ε̂k,1 −

(
d · (ε̂k,1 × k̂)

)
ε̂k,2 (136b)

−
(
k̂ · (ε̂k,1 × ε̂k,2)

)
d+

(
k̂ · (ε̂k,1 × ε̂k,2)

)
d (136c)

= − (d · (ε̂k,1 × ε̂k,2)) k̂ +
(
k̂ · (ε̂k,1 × ε̂k,2)

)
d (136d)

= d− (d · k̂)k̂ (136e)

for what we used the identity [a, b, c]d = [d, b, c]a+ [a,d, c]b+ [a, b,d]c with [a, b, c] = a · (b× c) (see

[2222]).

A.2 Stationary Phase Argument

We will demonstrate the stationary phase argument with an example. Consider the following surface

integral in spherical coordinates:

∫
g(θ)eik(θ)rdΩ (137)

With g(θ) some well behaved integrable function. Assuming k(θ) has a minimum (or saddle-point /

maximum) at ω0 and is infinitely often differentiable, we can Taylor expand k(θ) around this point:

eik(θ)r ' eik(θ0)reik
′′(θ0) (θ−θ0)2r (138)
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The second term is for r →∞ and θ 6= θ0 highly oscillating and won’t contribute to the integral. Thus,

most contribution will come from θ = θ0 such that we can approximate:

∫
g(θ)eik(θ)rdΩ ' g(θ0)

∫
eik(θ)rdΩ (139)

A more thorough analysis of the stationary phase argument can be found at [2323]. Taking the case

kr = kr cos θ ⇒ k(θ) = k cos θ with k ∈ R+
0 , the stationary points are n · π with n ∈ R0. This means

that the phase of eikr is stationary only if k and r are antiparallel or parallel. This approximation has

been used in chapter 2.2.22.2.2.

Appendix B Solving Density Matrix Elements in Mathematica

B.1 Analytically Solvable Cases

For the stationary case, the following Mathematica code was used:

This program is very straight forward, since it only uses the Mathematica-function LinearSolve to solve

the linear equations.

The non-stationary case needs a bit more effort. For instance, to solve the equations of motion for the

case without spontaneous emission, the differential equations have been split up into real - and imaginary

parts (y = Re(ρ̂eg) and z = Im(ρ̂eg). Furthermore, the quantity x = ρ̂ee − ρ̂gg was defined to simplify

the calculations. Hence, we get:

ẋ = −4Ω · z − γ · x (140a)

ẏ = −∆ · z − γ

2
· y (140b)

ż = ∆ · y + Ω · x− γ

2
· z (140c)

These differential equations (with γ = 0) have been solved using the DSolve-function of Mathematica,

which looks for an analytical solution of our problem:
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The case shown in chapter 2.3.32.3.3 has been calculated with the following code:

Eqs. 140140 can also be analytically solved for the case ∆ = 0, γ 6= 0. This can be done with the same

Mathematica-code by adjusting the differential equations appropriately.

B.2 Numerical Solution of a General Case

The general case ( ∆ 6= 0, γ 6= 0) can only be solved numerically. This has been done in Mathematica

by using the NDSolve-function, which solves partial differential equations with the “Numerical Method

of Lines” [2424].

The following code has been used to get the solution for the case γ = 2 1
s and ∆ = 3

2γ, Ω = 5
2γ.

Appendix C On the Plane-Wave Transition

C.1 Numerical Analysis

To evaluate
∑N
i=1 e

(k0(k̂0−r̂)ri) in Mathematica, first an array of three-dimensional vectors with random

entries in a certain range is created and (for visualisation) plotted. This is further used to perform

the given sum, which will then be evaluated for different values of φ and saved in a table. Finally, the

table-data is plotted in a polar-plot to illustrate the results of the sum for different values φ. The code

can be executed by calling the function “main[times, theta, n]” in the same notebook. With “n”, one

can adjust the accuracy of the φ-evaluation (∆φ = 2π
n ), “theta” is the polar angle and “times” is the
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number of atoms.

C.2 Illustration of the Central Limit Theorem

To produce the graphs in chapter 4.2.24.2.2, the following code was used:

This program creates a sum of cosine-functions with random phases, whereby the phases are distributed

evenly between [0, 2π]. This is repeated for a given sample size (e.g. 100 times) and then saved in

an array. Eventually, the results are plotted into a histogram with 100 bins. Again, the code can be

executed by calling the function “Histo[noofval, noofsum]” in the same notebook. With “noofval”,

one can adjust the sample size and with “noofsum” the number of summands.

Appendix D On the Two - and Three Level Calculations

D.1 Numeric Fourier Transform in Mathematica

The following code has been used to calculate numeric Fourier transforms.

In principle, the Mathematica function “Fourier” is used, which calculates the Fourier spectrum of a

discrete set of data. Therefore, one has to first discretize the given function before Fourier transforming
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it. Furthermore, the resulting spectrum has to be transformed, such that the axes label is correct. Note

that we already take the real part of the result, which is needed for calculating the energy.

D.2 Calculating Frequency Spectra

The following function has been used for creating the different plots of the Fourier transforms. In prin-

ciple, it combines most code fragments used in all calculations concerning the two - and three level system.

This code can be used for the three-level case by changing the equations of motion accordingly.
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